Chen-Jui Huang, Jin An Sam Oh, Marta Vicencio, Tianchen Hu, Hedi Yang, James N. Burrow, Yen-Fang Song, Gung-Chian Yin, Pavel Shevchenko, Kamila M. Wiaderek, Bing Joe Hwang, Ying Shirley Meng
{"title":"X-ray Micro-Computed Tomography for Structural Analysis of All-Solid-State Battery at Pouch Cell Level","authors":"Chen-Jui Huang, Jin An Sam Oh, Marta Vicencio, Tianchen Hu, Hedi Yang, James N. Burrow, Yen-Fang Song, Gung-Chian Yin, Pavel Shevchenko, Kamila M. Wiaderek, Bing Joe Hwang, Ying Shirley Meng","doi":"10.1021/acsenergylett.5c00956","DOIUrl":null,"url":null,"abstract":"Characterizing the microstructure of all-solid-state batteries (ASSBs) during fabrication and operation is vital for their advancement, particularly as scaling to pouch cell levels introduces challenges in probing large-scale microstructural evolution. This work highlights the potential of synchrotron X-ray micro-computed tomography (sXCT) as a nondestructive, rapid (<30 min), and high-resolution technique for visualizing and quantifying key microstructural features, including overhang, porosity, contact loss, active surface area, and tortuosity, in all-solid-state pouch cells. The large field of view (up to millimeters) of sXCT enables detailed analysis at an industry-relevant scale, bridging the gap between laboratory research and commercial applications. Furthermore, integrating realistic sXCT-derived 3D models into multiphysics simulations could provide insights into chemo-mechanical degradation, particularly at the edges of the pouch cells, offering a pathway for designing robust, high-performance ASSBs. This perspective establishes sXCT as an indispensable tool for advancing both the understanding and the engineering of next-generation energy storage systems.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"11 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00956","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Characterizing the microstructure of all-solid-state batteries (ASSBs) during fabrication and operation is vital for their advancement, particularly as scaling to pouch cell levels introduces challenges in probing large-scale microstructural evolution. This work highlights the potential of synchrotron X-ray micro-computed tomography (sXCT) as a nondestructive, rapid (<30 min), and high-resolution technique for visualizing and quantifying key microstructural features, including overhang, porosity, contact loss, active surface area, and tortuosity, in all-solid-state pouch cells. The large field of view (up to millimeters) of sXCT enables detailed analysis at an industry-relevant scale, bridging the gap between laboratory research and commercial applications. Furthermore, integrating realistic sXCT-derived 3D models into multiphysics simulations could provide insights into chemo-mechanical degradation, particularly at the edges of the pouch cells, offering a pathway for designing robust, high-performance ASSBs. This perspective establishes sXCT as an indispensable tool for advancing both the understanding and the engineering of next-generation energy storage systems.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.