Novel ferromagnetic CuFe2O4/Cu as a highly active catalyst for microwave-Fenton-like reaction

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yejin Nam, Deukhyeon Nam, Yoon Myung, Jong Hoon Joo, Changwoo Kim
{"title":"Novel ferromagnetic CuFe2O4/Cu as a highly active catalyst for microwave-Fenton-like reaction","authors":"Yejin Nam, Deukhyeon Nam, Yoon Myung, Jong Hoon Joo, Changwoo Kim","doi":"10.1038/s41545-025-00477-z","DOIUrl":null,"url":null,"abstract":"<p>To overcome the short retention time in small-scale wastewater treatment plants, it is necessary to develop processes with fast reaction rates. The microwave-Fenton-like reaction (MW-Fenton-like reaction), which combines external energy and catalysts, provides a solution with rapid reaction rate and high degradation efficiency. In this reaction, catalysts significantly influence decomposition efficiency. Developing magnetic catalysts can simplify the separation process. In this study, the superiority of copper-based metal oxides for the MW-Fenton-like reaction was confirmed through comparative experiments of various metal oxides. Based on these findings, highly active CuFe<sub>2</sub>O<sub>4</sub>/Cu particles were developed. The synthesized particles, with rough-surfaced solid-sphere morphology, exhibited ferromagnetic properties and were completely separated using a laboratory-scale magnet. CuFe<sub>2</sub>O<sub>4</sub>/Cu also showed high degradation over a wide pH range and achieved the highest degradation rate at pH 7. Furthermore, comparison of 4-nitrophenol (4-NP) degradation using MW and conventional heating demonstrated MW was superior in reaction rate, efficiency, and reusability.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"27 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00477-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To overcome the short retention time in small-scale wastewater treatment plants, it is necessary to develop processes with fast reaction rates. The microwave-Fenton-like reaction (MW-Fenton-like reaction), which combines external energy and catalysts, provides a solution with rapid reaction rate and high degradation efficiency. In this reaction, catalysts significantly influence decomposition efficiency. Developing magnetic catalysts can simplify the separation process. In this study, the superiority of copper-based metal oxides for the MW-Fenton-like reaction was confirmed through comparative experiments of various metal oxides. Based on these findings, highly active CuFe2O4/Cu particles were developed. The synthesized particles, with rough-surfaced solid-sphere morphology, exhibited ferromagnetic properties and were completely separated using a laboratory-scale magnet. CuFe2O4/Cu also showed high degradation over a wide pH range and achieved the highest degradation rate at pH 7. Furthermore, comparison of 4-nitrophenol (4-NP) degradation using MW and conventional heating demonstrated MW was superior in reaction rate, efficiency, and reusability.

Abstract Image

新型铁磁CuFe2O4/Cu作为微波-类芬顿反应的高活性催化剂
为了克服小型污水处理厂停留时间短的问题,有必要开发反应速度快的工艺。微波- fenton -like反应(MW-Fenton-like reaction)是将外界能量与催化剂相结合的一种反应速率快、降解效率高的溶液。在该反应中,催化剂对分解效率有显著影响。开发磁性催化剂可以简化分离过程。在本研究中,通过各种金属氧化物的对比实验,证实了铜基金属氧化物在mw - fenton类反应中的优越性。基于这些发现,开发出了高活性的CuFe2O4/Cu颗粒。合成的颗粒具有表面粗糙的固球形态,表现出铁磁性,并使用实验室规模的磁铁完全分离。CuFe2O4/Cu在较宽的pH范围内也表现出较高的降解率,在pH为7时达到最高的降解率。此外,比较了MW和传统加热对4-硝基苯酚(4-NP)的降解效果,发现MW在反应速度、效率和可重复利用性方面都有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信