Kevin Cunningham, Chris Kavanagh, Adam Pound, David Trestini, Niels Warburton and Jakob Neef
{"title":"Gravitational memory: new results from post-Newtonian and self-force theory","authors":"Kevin Cunningham, Chris Kavanagh, Adam Pound, David Trestini, Niels Warburton and Jakob Neef","doi":"10.1088/1361-6382/adbc3d","DOIUrl":null,"url":null,"abstract":"We compute the (displacement) gravitational wave memory due to a quasi-circular inspiral of two black holes using a variety of perturbative techniques. Within post-Newtonian theory, we extend previous results for non-spinning compact binaries to 3.5PN order. Using the gravitational self-force approach, we compute the memory at first order in the mass ratio for inspirals into a Kerr black hole. We do this both numerically and via a double post-Newtonian–self-force expansion which we carry out to 5PN order. At second order in the self-force approach, near-zone calculations encounter an infrared divergence associated with memory, which is resolved through matching the near-zone solution to a post-Minkowskian expansion in the far zone. We describe that matching procedure for the first time and show how it introduces nonlocal-in-time memory effects into the two-body dynamics at second order in the mass ratio, as was also predicted by recent 5PN calculations within the effective field theory approach. We then compute the gravitational-wave memory through second order in the mass ratio (excluding certain possible memory distortion effects) and find that it agrees well with recent results from numerical relativity simulations for near-comparable-mass binaries.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"39 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adbc3d","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We compute the (displacement) gravitational wave memory due to a quasi-circular inspiral of two black holes using a variety of perturbative techniques. Within post-Newtonian theory, we extend previous results for non-spinning compact binaries to 3.5PN order. Using the gravitational self-force approach, we compute the memory at first order in the mass ratio for inspirals into a Kerr black hole. We do this both numerically and via a double post-Newtonian–self-force expansion which we carry out to 5PN order. At second order in the self-force approach, near-zone calculations encounter an infrared divergence associated with memory, which is resolved through matching the near-zone solution to a post-Minkowskian expansion in the far zone. We describe that matching procedure for the first time and show how it introduces nonlocal-in-time memory effects into the two-body dynamics at second order in the mass ratio, as was also predicted by recent 5PN calculations within the effective field theory approach. We then compute the gravitational-wave memory through second order in the mass ratio (excluding certain possible memory distortion effects) and find that it agrees well with recent results from numerical relativity simulations for near-comparable-mass binaries.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.