{"title":"Observer-Based Adaptive Robust Control of Dual-Layer Multiagent Epidemic Model: Physical and Information Layers","authors":"Zohreh Abbasi, Xinzhi Liu","doi":"10.1049/cth2.70052","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes an innovative dual-layer multi-agent-based SIS epidemic model, incorporating a physical contact layer to model disease spread through travel or migration between cities, and an information layer to enable the sharing of infection data among healthcare providers across cities even without direct physical connections. An observer is designed to estimate the infected fraction in each city, utilising estimates from neighbouring cities connected in the physical layer in a distributed manner; these estimates are then leveraged in the information layer to synchronise each city's infection trajectory with a virtual leader. Additionally, the control input, typically formulated in multi-agent systems (MAS), is adopted as the sliding surface, with its stability demonstrated via Lyapunov analysis within the dual-layer SIS framework. An adaptive sliding mode control (ASMC) strategy is developed to address parameter uncertainties to reach this sliding surface, effectively integrating the physical and information layers’ dynamics to drive cities toward disease eradication. Finally, a numerical example is provided to validate the accuracy of the theoretical results.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70052","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70052","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an innovative dual-layer multi-agent-based SIS epidemic model, incorporating a physical contact layer to model disease spread through travel or migration between cities, and an information layer to enable the sharing of infection data among healthcare providers across cities even without direct physical connections. An observer is designed to estimate the infected fraction in each city, utilising estimates from neighbouring cities connected in the physical layer in a distributed manner; these estimates are then leveraged in the information layer to synchronise each city's infection trajectory with a virtual leader. Additionally, the control input, typically formulated in multi-agent systems (MAS), is adopted as the sliding surface, with its stability demonstrated via Lyapunov analysis within the dual-layer SIS framework. An adaptive sliding mode control (ASMC) strategy is developed to address parameter uncertainties to reach this sliding surface, effectively integrating the physical and information layers’ dynamics to drive cities toward disease eradication. Finally, a numerical example is provided to validate the accuracy of the theoretical results.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.