{"title":"The application and challenges of brain-computer interfaces in the medical industry","authors":"Qi Chen, Sha Zhao, Wei Wei, Tianyu Zhao, Rui He, Sishu Zhou, Zhenhang Yu","doi":"10.1002/brx2.70036","DOIUrl":null,"url":null,"abstract":"<p>Brain-computer interface (BCI) technology aims to create a connection pathway for exchanging information between the brain and devices with computing capabilities. This technology has become a global research focus, and many countries and regions are working to establish a BCI industry. BCIs have many potential applications, especially in the medical field. However, the complexities of non-invasive BCIs and the implantation risks associated with invasive BCIs have limited these technologies to laboratory settings. The main challenges for the practical implementation of BCIs include the lack of foundational technologies for non-invasive and invasive BCIs, the signal processing challenges associated with BCIs, the key components of BCIs, and the compatibility of BCI software and hardware. These shortcomings should be addressed to enhance the competitiveness of BCI products and promote the application of BCIs in medicine. In the future, if novel methods for acquiring or decoding neural signals are developed that enable non-invasive BCIs to achieve signal quality comparable to that of invasive techniques, it will propel BCI technology to leapfrog in development. Technological breakthroughs will enable BCIs to enhance medical technology and improve people's quality of life.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.70036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Brain-computer interface (BCI) technology aims to create a connection pathway for exchanging information between the brain and devices with computing capabilities. This technology has become a global research focus, and many countries and regions are working to establish a BCI industry. BCIs have many potential applications, especially in the medical field. However, the complexities of non-invasive BCIs and the implantation risks associated with invasive BCIs have limited these technologies to laboratory settings. The main challenges for the practical implementation of BCIs include the lack of foundational technologies for non-invasive and invasive BCIs, the signal processing challenges associated with BCIs, the key components of BCIs, and the compatibility of BCI software and hardware. These shortcomings should be addressed to enhance the competitiveness of BCI products and promote the application of BCIs in medicine. In the future, if novel methods for acquiring or decoding neural signals are developed that enable non-invasive BCIs to achieve signal quality comparable to that of invasive techniques, it will propel BCI technology to leapfrog in development. Technological breakthroughs will enable BCIs to enhance medical technology and improve people's quality of life.