Design of cooling structure improvement of hybrid commutated converter valve

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2025-06-16 DOI:10.1049/hve2.70060
Xu He, Lu Qu, Xiaoguang Wei, Fang Cai, Zhanqing Yu, Tianhui Yang, Yurong Luo, Gongyi Zhang
{"title":"Design of cooling structure improvement of hybrid commutated converter valve","authors":"Xu He,&nbsp;Lu Qu,&nbsp;Xiaoguang Wei,&nbsp;Fang Cai,&nbsp;Zhanqing Yu,&nbsp;Tianhui Yang,&nbsp;Yurong Luo,&nbsp;Gongyi Zhang","doi":"10.1049/hve2.70060","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a thermal management framework for 120 kV hybrid commutated converter (HCC) valves, addressing critical cooling challenges in multi-hundred-MW power conversion systems. Power loss calculations under rated (1.0 p.u.) and overload (1.2 p.u.) conditions demonstrate that HCC valves achieve comparable loss levels to line commutated converter counterparts while enabling active turn-off control. Comparative analysis of radiator configurations identifies 2-parallel branch connections as optimal. Integrated thermal-fluid models combining 3D finite element analysis and computational fluid dynamics reveal significant temperature gradients and flow maldistribution in baseline designs. On this basis, this paper modifies the flow from equal flow resistance allocation to heat-based allocation and it reduces maximum integrated gate-commutated thyristor temperature rise by 7.3% at 1.2 p.u. with minimal pressure drop variation. Experimental validation confirms the proposed cooling strategy enhances valve safety margins through improved heat dissipation balance, providing a validated theoretical foundation for high-power converter thermal design.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 3","pages":"570-580"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70060","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.70060","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a thermal management framework for 120 kV hybrid commutated converter (HCC) valves, addressing critical cooling challenges in multi-hundred-MW power conversion systems. Power loss calculations under rated (1.0 p.u.) and overload (1.2 p.u.) conditions demonstrate that HCC valves achieve comparable loss levels to line commutated converter counterparts while enabling active turn-off control. Comparative analysis of radiator configurations identifies 2-parallel branch connections as optimal. Integrated thermal-fluid models combining 3D finite element analysis and computational fluid dynamics reveal significant temperature gradients and flow maldistribution in baseline designs. On this basis, this paper modifies the flow from equal flow resistance allocation to heat-based allocation and it reduces maximum integrated gate-commutated thyristor temperature rise by 7.3% at 1.2 p.u. with minimal pressure drop variation. Experimental validation confirms the proposed cooling strategy enhances valve safety margins through improved heat dissipation balance, providing a validated theoretical foundation for high-power converter thermal design.

Abstract Image

混合换向换向阀冷却结构改进设计
本文提出了一种用于120 kV混合换向转换器(HCC)阀门的热管理框架,解决了数百兆瓦电力转换系统中的关键冷却问题。在额定(1.0 p.u)和过载(1.2 p.u)条件下的功率损耗计算表明,HCC阀门在实现主动关断控制的同时,可以达到与线路换向转换器相当的功率损耗水平。散热器配置的对比分析确定了2并联分支连接是最优的。结合三维有限元分析和计算流体动力学的集成热流体模型揭示了基线设计中显著的温度梯度和流动不均匀。在此基础上,本文将流量由等流阻分配改为基于热的分配,在1.2 p.u.压降变化最小的情况下,将集成栅极整流晶闸管最大温升降低了7.3%。实验验证证实了所提出的冷却策略通过改善散热平衡提高了阀门的安全裕度,为大功率变流器的热设计提供了验证的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信