Interval-Valued Probabilistic Dual Hesitant Fuzzy Muirhead Mean Aggregation Operators and Their Applications in Regenerative Energy Source Selection

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Muhammad Qiyas, Muhammad Naeem, Zahid Khan, Samuel Okyer
{"title":"Interval-Valued Probabilistic Dual Hesitant Fuzzy Muirhead Mean Aggregation Operators and Their Applications in Regenerative Energy Source Selection","authors":"Muhammad Qiyas,&nbsp;Muhammad Naeem,&nbsp;Zahid Khan,&nbsp;Samuel Okyer","doi":"10.1155/int/8892299","DOIUrl":null,"url":null,"abstract":"<div>\n <p>As an effective addition to the hesitant fuzzy set (HFS), a probabilistic dual hesitant fuzzy set (PDHFS) has been designed in this paper. PDHFS would be an improved version of the dual hesitant fuzzy set (DHFS) where both membership and nonmembership hesitant quality is considered for all its probability of existence. Additional information on the degree of acceptance or rejection contains such allocated probabilities. More conveniently, we create a comprehensive type of PDHFS called interval-valued PDHFS (IVPDHFS) to interpret the probability data that exist in the hesitancy. This study describes several basic operating laws by stressing the advantages and enriching the utility of IVPDHFS in MAGDM. To aggregate IVPDHF information in MAGDM problems and extend its applications, we present the Muirhead mean (MM) operator of IVPDHFSs and study some attractive properties of the suggested operator. Besides that, in order to compute attribute weights, a new organizational framework is designed by using partial knowledge of the decision makers (DMs). Subsequently, a standardized technique with the suggested operator for MAGDM is introduced, and the realistic usage of the operator is illustrated by the use of a problem of regenerative energy source selection. We discuss the influence of the parameter vector on the ranking results. Finally, to address the benefits and limitations of the recommended MAGDM approach, the findings of the proposal are contrasted with other approaches.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/8892299","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/8892299","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As an effective addition to the hesitant fuzzy set (HFS), a probabilistic dual hesitant fuzzy set (PDHFS) has been designed in this paper. PDHFS would be an improved version of the dual hesitant fuzzy set (DHFS) where both membership and nonmembership hesitant quality is considered for all its probability of existence. Additional information on the degree of acceptance or rejection contains such allocated probabilities. More conveniently, we create a comprehensive type of PDHFS called interval-valued PDHFS (IVPDHFS) to interpret the probability data that exist in the hesitancy. This study describes several basic operating laws by stressing the advantages and enriching the utility of IVPDHFS in MAGDM. To aggregate IVPDHF information in MAGDM problems and extend its applications, we present the Muirhead mean (MM) operator of IVPDHFSs and study some attractive properties of the suggested operator. Besides that, in order to compute attribute weights, a new organizational framework is designed by using partial knowledge of the decision makers (DMs). Subsequently, a standardized technique with the suggested operator for MAGDM is introduced, and the realistic usage of the operator is illustrated by the use of a problem of regenerative energy source selection. We discuss the influence of the parameter vector on the ranking results. Finally, to address the benefits and limitations of the recommended MAGDM approach, the findings of the proposal are contrasted with other approaches.

Abstract Image

区间值概率对偶犹豫模糊混沌平均聚集算子及其在再生能源选择中的应用
本文设计了一种概率对偶犹豫模糊集(PDHFS),作为对犹豫模糊集的有效补充。PDHFS是对偶犹豫模糊集(dual犹豫fuzzy set, DHFS)的改进版本,对其存在的所有概率同时考虑隶属性和非隶属性犹豫质量。关于接受或拒绝程度的附加信息包含了这种分配的概率。更方便的是,我们创建了一种综合类型的PDHFS,称为区间值PDHFS (IVPDHFS)来解释存在于犹豫中的概率数据。本研究通过强调IVPDHFS在MAGDM中的优势和丰富其应用,描述了几种基本的工作规律。为了在MAGDM问题中聚合IVPDHF信息并扩展其应用,我们提出了ivpdhfs的Muirhead均值算子,并研究了该算子的一些吸引人的性质。此外,利用决策者的部分知识,设计了一种新的组织框架来计算属性权重。随后,介绍了一种带有建议算子的MAGDM标准化技术,并通过可再生能源选择问题说明了算子的实际使用。讨论了参数向量对排序结果的影响。最后,为了说明推荐的MAGDM方法的优点和局限性,将该建议的结果与其他方法进行了对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信