Nitrogen-doped coal-based porous carbon and reduced graphene oxide composites for high-performance symmetrical supercapacitors†

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hongze Zhu, Fuyang Ren, Haoran Pan, Lu Tian, Tao Wang, Jianglong Yu, Jinxiao Dou, Dongling Wu and Xingxing Chen
{"title":"Nitrogen-doped coal-based porous carbon and reduced graphene oxide composites for high-performance symmetrical supercapacitors†","authors":"Hongze Zhu, Fuyang Ren, Haoran Pan, Lu Tian, Tao Wang, Jianglong Yu, Jinxiao Dou, Dongling Wu and Xingxing Chen","doi":"10.1039/D5NJ01042J","DOIUrl":null,"url":null,"abstract":"<p >Supercapacitors, bridging traditional capacitors with fuel cell and battery technologies, demand advanced electrode materials to enhance energy storage performance. This study focuses on the synthesis of nitrogen-doped coal-based porous carbon/reduced graphene oxide (rGO) composites using low-cost, abundant low-rank lignite as a precursor. The hybrid material, activated by KOH and nitrogen-doped <em>via</em> urea, achieves specific capacitances of 207 F g<small><sup>−1</sup></small> and 145.2 F g<small><sup>−1</sup></small> in three- and two-electrode systems, respectively, at 1 A g<small><sup>−1</sup></small> after thermal treatment at 800 °C. The assembled symmetrical supercapacitor exhibits a high energy density of 20.2 W h kg<small><sup>−1</sup></small> at a power density of 999.8 W kg<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small>, with nearly 100% capacitance retention and a coulombic efficiency over 10 000 cycles. The synergistic effects from coal-based porous carbon and rGO provides a high specific surface area, optimal pore size distribution, and a suitable carbon microcrystalline structure, collectively promoting ion transport and charge storage. This work provides not only advanced high-performance supercapacitor design, but also evidence for the sustainable utilization of low-grade coal resources in clean energy technologies.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 26","pages":" 11509-11519"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj01042j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Supercapacitors, bridging traditional capacitors with fuel cell and battery technologies, demand advanced electrode materials to enhance energy storage performance. This study focuses on the synthesis of nitrogen-doped coal-based porous carbon/reduced graphene oxide (rGO) composites using low-cost, abundant low-rank lignite as a precursor. The hybrid material, activated by KOH and nitrogen-doped via urea, achieves specific capacitances of 207 F g−1 and 145.2 F g−1 in three- and two-electrode systems, respectively, at 1 A g−1 after thermal treatment at 800 °C. The assembled symmetrical supercapacitor exhibits a high energy density of 20.2 W h kg−1 at a power density of 999.8 W kg−1 at 1 A g−1, with nearly 100% capacitance retention and a coulombic efficiency over 10 000 cycles. The synergistic effects from coal-based porous carbon and rGO provides a high specific surface area, optimal pore size distribution, and a suitable carbon microcrystalline structure, collectively promoting ion transport and charge storage. This work provides not only advanced high-performance supercapacitor design, but also evidence for the sustainable utilization of low-grade coal resources in clean energy technologies.

Abstract Image

氮掺杂煤基多孔碳和还原氧化石墨烯复合材料用于高性能对称超级电容器†
超级电容器是传统电容器与燃料电池和电池技术的桥梁,需要先进的电极材料来提高能量存储性能。本研究的重点是利用低成本、丰富的低品位褐煤作为前驱体合成氮掺杂煤基多孔碳/还原氧化石墨烯(rGO)复合材料。该杂化材料经KOH和尿素掺杂氮活化后,在800℃热处理后,在三电极和双电极体系中,在1 A g−1下的比电容分别为207 F g−1和145.2 F g−1。所制备的对称超级电容器在1ag−1下的功率密度为999.8 W kg−1,能量密度为20.2 W h kg−1,电容保持率接近100%,库仑效率超过10000次循环。煤基多孔碳和还原氧化石墨烯的协同作用提供了高比表面积、最佳孔径分布和合适的碳微晶结构,共同促进离子传输和电荷储存。这项工作不仅提供了先进的高性能超级电容器设计,而且为清洁能源技术中低品位煤炭资源的可持续利用提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信