Tailoring electromagnetic interference shielding properties in sandwich architectures made with low-concentration multi-walled CNT–reinforced PDMS†

IF 4.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pavithra Ananthasubramanian, Pritom J. Bora, Chandana Gadadasu, Praveen C. Ramamurthy and Nagarajan Raghavan
{"title":"Tailoring electromagnetic interference shielding properties in sandwich architectures made with low-concentration multi-walled CNT–reinforced PDMS†","authors":"Pavithra Ananthasubramanian, Pritom J. Bora, Chandana Gadadasu, Praveen C. Ramamurthy and Nagarajan Raghavan","doi":"10.1039/D5MA00120J","DOIUrl":null,"url":null,"abstract":"<p >This study presents a strategically designed multilayered polydimethylsiloxane (PDMS) nanocomposite reinforced with functionalized multi-walled carbon nanotubes (MWCNTs), designed for absorption predominant electromagnetic interference (EMI) shielding. The layered configuration achieves a shielding effectiveness (SE<small><sub><em>T</em></sub></small>) of ∼25 dB across the X-band (8.2–12.4 GHz) and Ku-band (12.4–18 GHz) at a minimal thickness of 0.7 mm, significantly outperforming conventional designs. Electromagnetic simulations predict an improved SE<small><sub><em>T</em></sub></small> of ∼35 dB (∼99.99% attenuation) at 3.5 mm thickness, with absorption accounting for ∼80% of the SE<small><sub><em>T</em></sub></small>, indicating its efficiency. The interface-rich architecture enhances interfacial polarization, a key mechanism in achieving high shielding efficiency. A green shielding material with 1 wt% MWCNT achieves ∼15 dB SE<small><sub><em>T</em></sub></small> (&gt;90% shielding), with a reflection component (SE<small><sub><em>R</em></sub></small>) of less than 3 dB and a green shielding index (<em>g</em><small><sub>s</sub></small>) ≥ 1, demonstrating excellent EMI shielding performance. The self-assembled MWCNT networks improve interfacial density, leveraging impedance mismatches and energy transfer mechanisms to maximize absorption. This design enables the facile solution processing of high-performance EMI shielding materials at low filler concentrations, with tunable layer orientations and thicknesses to meet electromagnetic application-specific requirements. The approach provides a scalable and efficient pathway to address the increasing demand for advanced EMI shielding solutions. Despite challenges related to scalability and anisotropy, this work represents a significant step toward the development of environmentally conscious, high-performance EMI shielding materials.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 13","pages":" 4299-4312"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00120j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00120j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a strategically designed multilayered polydimethylsiloxane (PDMS) nanocomposite reinforced with functionalized multi-walled carbon nanotubes (MWCNTs), designed for absorption predominant electromagnetic interference (EMI) shielding. The layered configuration achieves a shielding effectiveness (SET) of ∼25 dB across the X-band (8.2–12.4 GHz) and Ku-band (12.4–18 GHz) at a minimal thickness of 0.7 mm, significantly outperforming conventional designs. Electromagnetic simulations predict an improved SET of ∼35 dB (∼99.99% attenuation) at 3.5 mm thickness, with absorption accounting for ∼80% of the SET, indicating its efficiency. The interface-rich architecture enhances interfacial polarization, a key mechanism in achieving high shielding efficiency. A green shielding material with 1 wt% MWCNT achieves ∼15 dB SET (>90% shielding), with a reflection component (SER) of less than 3 dB and a green shielding index (gs) ≥ 1, demonstrating excellent EMI shielding performance. The self-assembled MWCNT networks improve interfacial density, leveraging impedance mismatches and energy transfer mechanisms to maximize absorption. This design enables the facile solution processing of high-performance EMI shielding materials at low filler concentrations, with tunable layer orientations and thicknesses to meet electromagnetic application-specific requirements. The approach provides a scalable and efficient pathway to address the increasing demand for advanced EMI shielding solutions. Despite challenges related to scalability and anisotropy, this work represents a significant step toward the development of environmentally conscious, high-performance EMI shielding materials.

Abstract Image

用低浓度多壁碳纳米管增强PDMS†制成的三明治结构中的定制电磁干扰屏蔽性能
本研究提出了一种基于功能化多壁碳纳米管(MWCNTs)的多层聚二甲基硅氧烷(PDMS)纳米复合材料,用于吸收主导电磁干扰(EMI)屏蔽。分层结构在最小厚度为0.7 mm的情况下,在x波段(8.2-12.4 GHz)和ku波段(12.4-18 GHz)实现了约25 dB的屏蔽效能(SET),显著优于传统设计。电磁模拟预测,在3.5 mm厚度下,改进的SET为~ 35 dB(~ 99.99%衰减),吸收占SET的~ 80%,表明其效率。界面丰富的结构增强了界面极化,这是实现高屏蔽效率的关键机制。含有1wt % MWCNT的绿色屏蔽材料可实现约15db SET (>;90%屏蔽),反射分量(SER)小于3db,绿色屏蔽指数(gs)≥1,具有出色的EMI屏蔽性能。自组装的MWCNT网络提高了界面密度,利用阻抗不匹配和能量传递机制来最大化吸收。这种设计能够在低填料浓度下轻松处理高性能EMI屏蔽材料,具有可调的层方向和厚度,以满足特定的电磁应用要求。该方法提供了一种可扩展且高效的途径,以满足对先进EMI屏蔽解决方案日益增长的需求。尽管存在与可扩展性和各向异性相关的挑战,但这项工作代表着向环保、高性能EMI屏蔽材料的发展迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信