Adaptive Intelligent Radar Target Detection in Time-Varying Sea Clutter via Activate Self-Learning

Xiang Wang;Yumiao Wang;Guolong Cui
{"title":"Adaptive Intelligent Radar Target Detection in Time-Varying Sea Clutter via Activate Self-Learning","authors":"Xiang Wang;Yumiao Wang;Guolong Cui","doi":"10.1109/TRS.2025.3580606","DOIUrl":null,"url":null,"abstract":"Maritime radar detectors developed using deep learning technology have demonstrated promising performance in the clutter environment. However, real clutter environments are usually time-varying, and the nonstationary radar data stream easily breaks the independent and identically distributed (i.i.d.) prerequisite of standard deep learning detectors, decreasing the detector’s performance. This article considers the problem of adaptive maritime radar target detection for deep learning-based detectors in time-varying clutter environments. We propose an adaptive target detection framework based on an active self-learning (SL) strategy, which can actively sense the environment shift and update the detector parameters correspondingly through SL. Specifically, we first use the annotated dataset to train an initial detector. Then, we design an environment sensing module by adding a subdetection head on the detector. When the detector works in time-varying clutter environments, the entropy between the detector’s output and the subdetection head’s output is utilized to sense the environment shift. Next, we propose an SL strategy that combines adaptive pseudo-label generation with consistency regularization. Once the environment shift is detected, the detector parameters are updated by the proposed SL strategy, improving the detector’s performance in time-varying clutter environments. Experimental results on the public maritime radar database validate the effectiveness of the proposed framework.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"919-934"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11037621/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Maritime radar detectors developed using deep learning technology have demonstrated promising performance in the clutter environment. However, real clutter environments are usually time-varying, and the nonstationary radar data stream easily breaks the independent and identically distributed (i.i.d.) prerequisite of standard deep learning detectors, decreasing the detector’s performance. This article considers the problem of adaptive maritime radar target detection for deep learning-based detectors in time-varying clutter environments. We propose an adaptive target detection framework based on an active self-learning (SL) strategy, which can actively sense the environment shift and update the detector parameters correspondingly through SL. Specifically, we first use the annotated dataset to train an initial detector. Then, we design an environment sensing module by adding a subdetection head on the detector. When the detector works in time-varying clutter environments, the entropy between the detector’s output and the subdetection head’s output is utilized to sense the environment shift. Next, we propose an SL strategy that combines adaptive pseudo-label generation with consistency regularization. Once the environment shift is detected, the detector parameters are updated by the proposed SL strategy, improving the detector’s performance in time-varying clutter environments. Experimental results on the public maritime radar database validate the effectiveness of the proposed framework.
基于激活自学习的时变海杂波自适应智能雷达目标检测
利用深度学习技术开发的海上雷达探测器在杂波环境中表现出了良好的性能。然而,真实的杂波环境通常是时变的,非平稳的雷达数据流容易打破标准深度学习检测器独立且同分布的前提,降低了检测器的性能。研究了时变杂波环境下基于深度学习的船舶雷达自适应目标检测问题。我们提出了一种基于主动自学习(SL)策略的自适应目标检测框架,该框架可以主动感知环境变化,并通过主动自学习相应地更新检测器参数。具体来说,我们首先使用带注释的数据集训练初始检测器。然后,我们通过在检测器上增加子检测头来设计环境传感模块。当检测器工作在时变杂波环境中时,利用检测器输出与子检测头输出之间的熵来感知环境的位移。接下来,我们提出了一种将自适应伪标签生成与一致性正则化相结合的SL策略。在检测到环境变化后,采用该策略对检测器参数进行更新,提高了检测器在时变杂波环境中的性能。在公共海事雷达数据库上的实验结果验证了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信