{"title":"A 28-nm 9T1C SRAM-Based CIM Macro With Hierarchical Capacitance Weighting and Two-Step Capacitive Comparison ADCs for CNNs","authors":"Zhiting Lin;Runru Yu;Yunhao Li;Miao Long;Yu Liu;Jianxing Zhou;Da Huo;Qingchuan Zhu;Yue Zhao;Lintao Chen;Chunyu Peng;Qiang Zhao;Xin Li;Chenghu Dai;Xiulong Wu","doi":"10.1109/TVLSI.2025.3545635","DOIUrl":null,"url":null,"abstract":"In the realm of charge-domain computing-in-memory (CIM) macros, reducing the area of capacitor ladder and analog-to-digital converter (ADC) while maintaining high throughput remains a significant challenge. This brief introduces an adjustable-weight CIM macro designed to enhance both energy efficiency and area efficiency for convolutional neural networks (CNNs). The proposed architecture uses: 1) a customized 9T1C bit cell for sensing margin improvement and bidirectional decoupled read ports; 2) a hierarchical capacitance weighting (HCW) structure that achieves a weight accumulation of 1/2/4 bits with less capacitance area and weighting time; and 3) a two-step capacitive comparison ADCs (TC-ADCs) readout scheme to improve area efficiency and throughput. The proposed 8-kb static random address memory (SRAM) CIM macro is implemented using 28-nm CMOS technology. It can achieve an energy efficiency of 224.4 TOPS/W and an area efficiency of 21.894 TOPS/mm<sup>2</sup>, and the accuracies on MNIST, CIFAR-10, and CIFAR-100 datasets are 99.67%, 89.13%, and 67.58% with a 4-b input and 4-b weight.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 7","pages":"2009-2013"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10934974/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of charge-domain computing-in-memory (CIM) macros, reducing the area of capacitor ladder and analog-to-digital converter (ADC) while maintaining high throughput remains a significant challenge. This brief introduces an adjustable-weight CIM macro designed to enhance both energy efficiency and area efficiency for convolutional neural networks (CNNs). The proposed architecture uses: 1) a customized 9T1C bit cell for sensing margin improvement and bidirectional decoupled read ports; 2) a hierarchical capacitance weighting (HCW) structure that achieves a weight accumulation of 1/2/4 bits with less capacitance area and weighting time; and 3) a two-step capacitive comparison ADCs (TC-ADCs) readout scheme to improve area efficiency and throughput. The proposed 8-kb static random address memory (SRAM) CIM macro is implemented using 28-nm CMOS technology. It can achieve an energy efficiency of 224.4 TOPS/W and an area efficiency of 21.894 TOPS/mm2, and the accuracies on MNIST, CIFAR-10, and CIFAR-100 datasets are 99.67%, 89.13%, and 67.58% with a 4-b input and 4-b weight.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.