{"title":"A Universal Sequential Authentication Scheme for TAPC-Based Test Standards","authors":"Guan-Rong Chen;Kuen-Jong Lee","doi":"10.1109/TVLSI.2025.3562015","DOIUrl":null,"url":null,"abstract":"Integrated circuits (ICs) have become extremely complex nowadays. Therefore, multiple test standards could be employed to handle different testing scenarios. Unfortunately, this also leads to serious security problems since attackers can exploit the excellent controllability and observability of test standards to steal confidential information or disrupt the circuit’s functionality. This article proposes a universal sequential authentication scheme that is compatible with test standards employing the test access port controller (TAPC) defined in IEEE Std 1149.1. The main objective is to protect multiple TAPC-based test standards with a universal security module. In this scheme, only authorized test data can be updated to the target register to control the corresponding test standard, and only the response to authorized test data can be output. The key idea is to generate different authentication keys for different test data, and even with the same set of test data, if their input sequences are different, their authentication keys will also be different. Furthermore, we develop an irreversible obfuscation mechanism to generate fake output data to confuse attackers. Due to its irreversibility, the original correct output data cannot be deduced from the fake output data. Experimental results on a typical processor, i.e., SCR1, show that the proposed scheme causes no time overhead, and the area overhead is only 1.74%.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 7","pages":"1972-1982"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10979887/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated circuits (ICs) have become extremely complex nowadays. Therefore, multiple test standards could be employed to handle different testing scenarios. Unfortunately, this also leads to serious security problems since attackers can exploit the excellent controllability and observability of test standards to steal confidential information or disrupt the circuit’s functionality. This article proposes a universal sequential authentication scheme that is compatible with test standards employing the test access port controller (TAPC) defined in IEEE Std 1149.1. The main objective is to protect multiple TAPC-based test standards with a universal security module. In this scheme, only authorized test data can be updated to the target register to control the corresponding test standard, and only the response to authorized test data can be output. The key idea is to generate different authentication keys for different test data, and even with the same set of test data, if their input sequences are different, their authentication keys will also be different. Furthermore, we develop an irreversible obfuscation mechanism to generate fake output data to confuse attackers. Due to its irreversibility, the original correct output data cannot be deduced from the fake output data. Experimental results on a typical processor, i.e., SCR1, show that the proposed scheme causes no time overhead, and the area overhead is only 1.74%.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.