{"title":"Implementing Homomorphic Encryption-Based Logic Locking in System-On-Chip Designs","authors":"Ziyang Ye;Makoto Ikeda","doi":"10.1109/TVLSI.2025.3556241","DOIUrl":null,"url":null,"abstract":"This study presents a logic-locking scheme based on the binary ring learning with error (bin-RLWE) algorithm, implemented in a reduced instruction set computer-five (RISC-V) system-on-chip (SoC) design. Unlike traditional logic-locking methods that require providing users with raw locking parameters, the proposed approach secures critical logic paths in the privilege switching process without exposing these sensitive parameters. The implemented locking module itself consumes 3519 lookup tables (LUTs) and 2645 registers, leading to an overall overhead of 6.0% in LUTs and 6.9% in registers compared to the baseline system. The unlock process requires about <inline-formula> <tex-math>$2.6~\\mu $ </tex-math></inline-formula>s, introducing moderate performance impact and primarily affecting system-level operations while preserving user-level computational efficiency.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 7","pages":"2049-2053"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10962447/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a logic-locking scheme based on the binary ring learning with error (bin-RLWE) algorithm, implemented in a reduced instruction set computer-five (RISC-V) system-on-chip (SoC) design. Unlike traditional logic-locking methods that require providing users with raw locking parameters, the proposed approach secures critical logic paths in the privilege switching process without exposing these sensitive parameters. The implemented locking module itself consumes 3519 lookup tables (LUTs) and 2645 registers, leading to an overall overhead of 6.0% in LUTs and 6.9% in registers compared to the baseline system. The unlock process requires about $2.6~\mu $ s, introducing moderate performance impact and primarily affecting system-level operations while preserving user-level computational efficiency.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.