FLyer: Federated Learning-Based Crop Yield Prediction for Agriculture 5.0

Tanushree Dey;Somnath Bera;Anwesha Mukherjee;Debashis De;Rajkumar Buyya
{"title":"FLyer: Federated Learning-Based Crop Yield Prediction for Agriculture 5.0","authors":"Tanushree Dey;Somnath Bera;Anwesha Mukherjee;Debashis De;Rajkumar Buyya","doi":"10.1109/TAI.2025.3534149","DOIUrl":null,"url":null,"abstract":"Crop yield prediction is a significant area of precision agriculture. In this article, we propose a crop yield prediction framework named FLyer, based on federated learning and edge computing. In FLyer, the soil and environmental data are locally processed inside the edge servers, and the model parameters are transmitted between the edge servers and the cloud with encrypted gradients. LSTM is used as the local and global models for data analysis. As the LSTM model can capture the temporal dependencies and hold the sequential nature of the data, we use LSTM in FLyer. By encrypting the gradients, the gradient information leakage ratio is reduced, and data privacy is protected. For gradient encryption, we use AES-256, and for data encryption during local storage we use RSA and AES-256. The results demonstrate that FLyer diminishes the latency by <inline-formula><tex-math>$\\boldsymbol{\\sim}$</tex-math></inline-formula>39% and energy consumption by <inline-formula><tex-math>$\\boldsymbol{\\sim}$</tex-math></inline-formula>40% than the conventional edge-cloud framework respectively. The experimental results show that the global model in FLyer achieves above 99% accuracy, precision, recall, and F1-score in crop yield prediction. The results also present that the local models also achieve <inline-formula><tex-math>$\\boldsymbol{&gt;}$</tex-math></inline-formula>94% accuracy in crop yield prediction.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 7","pages":"1943-1952"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10855681/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Crop yield prediction is a significant area of precision agriculture. In this article, we propose a crop yield prediction framework named FLyer, based on federated learning and edge computing. In FLyer, the soil and environmental data are locally processed inside the edge servers, and the model parameters are transmitted between the edge servers and the cloud with encrypted gradients. LSTM is used as the local and global models for data analysis. As the LSTM model can capture the temporal dependencies and hold the sequential nature of the data, we use LSTM in FLyer. By encrypting the gradients, the gradient information leakage ratio is reduced, and data privacy is protected. For gradient encryption, we use AES-256, and for data encryption during local storage we use RSA and AES-256. The results demonstrate that FLyer diminishes the latency by $\boldsymbol{\sim}$39% and energy consumption by $\boldsymbol{\sim}$40% than the conventional edge-cloud framework respectively. The experimental results show that the global model in FLyer achieves above 99% accuracy, precision, recall, and F1-score in crop yield prediction. The results also present that the local models also achieve $\boldsymbol{>}$94% accuracy in crop yield prediction.
传单:基于联邦学习的农业作物产量预测5.0
作物产量预测是精准农业的一个重要领域。本文提出了一种基于联邦学习和边缘计算的作物产量预测框架FLyer。在FLyer中,土壤和环境数据在边缘服务器内部进行本地处理,模型参数在边缘服务器和云之间以加密梯度传输。LSTM分别作为局部模型和全局模型进行数据分析。由于LSTM模型可以捕获时间依赖性并保持数据的顺序性质,因此我们在FLyer中使用LSTM。通过对梯度进行加密,降低了梯度信息泄露率,保护了数据隐私。对于梯度加密,我们使用AES-256,对于本地存储期间的数据加密,我们使用RSA和AES-256。结果表明,与传统的边缘云框架相比,FLyer的延迟降低了39%,能耗降低了40%。实验结果表明,FLyer中的全局模型在作物产量预测中准确率、精密度、召回率和f1评分均达到99%以上。结果还表明,局部模型在作物产量预测中也达到了94%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信