{"title":"Neural Architecture Search Generated Phase Retrieval Net for Real-Time Off-Axis Quantitative Phase Imaging","authors":"Xin Shu;Mengxuan Niu;Yi Zhang;Wei Luo;Renjie Zhou","doi":"10.1109/LPT.2025.3581063","DOIUrl":null,"url":null,"abstract":"In off-axis Quantitative Phase Imaging (QPI), artificial neural networks have been recently applied for phase retrieval with aberration compensation and phase unwrapping. However, the involved neural network architectures are largely unoptimized and inefficient with low inference speed, which hinders the realization of real-time imaging. Here, we propose a Neural Architecture Search (NAS) generated Phase Retrieval Net (NAS-PRNet) for accurate and fast phase retrieval. NAS-PRNet is an encoder-decoder style neural network, automatically found from a large neural network architecture search space through NAS. By modifying the differentiable NAS scheme from SparseMask, we learn the optimized skip connections through gradient descent. Specifically, we implement MobileNet-v2 as the encoder and define a synthesized loss that incorporates phase reconstruction loss and network sparsity loss. NAS-PRNet has achieved high-fidelity phase retrieval by achieving a peak Signal-to-Noise Ratio (PSNR) of 36.7 dB and a Structural SIMilarity (SSIM) of 86.6% as tested on interferograms of biological cells. Notably, NAS-PRNet achieves phase retrieval in only 31 ms, representing <inline-formula> <tex-math>$15\\times $ </tex-math></inline-formula> speedup over the most recent Mamba-UNet with only a slightly lower phase retrieval accuracy.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 18","pages":"1069-1072"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11039840","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11039840/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In off-axis Quantitative Phase Imaging (QPI), artificial neural networks have been recently applied for phase retrieval with aberration compensation and phase unwrapping. However, the involved neural network architectures are largely unoptimized and inefficient with low inference speed, which hinders the realization of real-time imaging. Here, we propose a Neural Architecture Search (NAS) generated Phase Retrieval Net (NAS-PRNet) for accurate and fast phase retrieval. NAS-PRNet is an encoder-decoder style neural network, automatically found from a large neural network architecture search space through NAS. By modifying the differentiable NAS scheme from SparseMask, we learn the optimized skip connections through gradient descent. Specifically, we implement MobileNet-v2 as the encoder and define a synthesized loss that incorporates phase reconstruction loss and network sparsity loss. NAS-PRNet has achieved high-fidelity phase retrieval by achieving a peak Signal-to-Noise Ratio (PSNR) of 36.7 dB and a Structural SIMilarity (SSIM) of 86.6% as tested on interferograms of biological cells. Notably, NAS-PRNet achieves phase retrieval in only 31 ms, representing $15\times $ speedup over the most recent Mamba-UNet with only a slightly lower phase retrieval accuracy.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.