Sustainable enhancement of Henequen fiber-reinforced polymer composites with copper oxide nanoparticles: A step forward in clean engineering and technology

IF 6.5 Q2 ENGINEERING, ENVIRONMENTAL
Thandavamoorthy Raja , Yuvarajan Devarajan , Geetika M. Patel , Jayanta Kumar Nath , Aravindan Munusamy Kalidhas , Shweta Sharma , Pavan Chaudhary
{"title":"Sustainable enhancement of Henequen fiber-reinforced polymer composites with copper oxide nanoparticles: A step forward in clean engineering and technology","authors":"Thandavamoorthy Raja ,&nbsp;Yuvarajan Devarajan ,&nbsp;Geetika M. Patel ,&nbsp;Jayanta Kumar Nath ,&nbsp;Aravindan Munusamy Kalidhas ,&nbsp;Shweta Sharma ,&nbsp;Pavan Chaudhary","doi":"10.1016/j.clet.2025.101039","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the development of environmentally sustainable Henequen fiber-reinforced polymer composites enhanced with copper oxide nanoparticles for clean engineering applications. Five composite variants were fabricated via the hand lay-up method with varying copper oxide loadings to investigate their influence on mechanical, thermal, and antibacterial properties. The composite with 15 g of copper oxide exhibited superior performance, achieving a tensile strength of 76.19 MPa, flexural strength of 81.29 MPa, impact strength of 17.92 kJ/m<sup>2</sup>, and Shore D hardness of 67. Microscopic analysis confirmed improved fiber–matrix adhesion and reduced fiber pull-out, while thermogravimetric analysis indicated enhanced thermal stability with 20 % char yield at 500 °C. Elemental mapping verified nanoparticle integration, and antibacterial assays revealed significant inhibition against <em>Pseudomonas aeruginosa</em> and <em>Staphylococcus aureus</em>, supported by biofilm disruption and oxidative cytotoxicity. These findings demonstrate the potential of copper oxide-reinforced natural fiber composites as biodegradable, antimicrobial, and high-performance materials aligned with the principles of clean and sustainable engineering.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"27 ","pages":"Article 101039"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790825001624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the development of environmentally sustainable Henequen fiber-reinforced polymer composites enhanced with copper oxide nanoparticles for clean engineering applications. Five composite variants were fabricated via the hand lay-up method with varying copper oxide loadings to investigate their influence on mechanical, thermal, and antibacterial properties. The composite with 15 g of copper oxide exhibited superior performance, achieving a tensile strength of 76.19 MPa, flexural strength of 81.29 MPa, impact strength of 17.92 kJ/m2, and Shore D hardness of 67. Microscopic analysis confirmed improved fiber–matrix adhesion and reduced fiber pull-out, while thermogravimetric analysis indicated enhanced thermal stability with 20 % char yield at 500 °C. Elemental mapping verified nanoparticle integration, and antibacterial assays revealed significant inhibition against Pseudomonas aeruginosa and Staphylococcus aureus, supported by biofilm disruption and oxidative cytotoxicity. These findings demonstrate the potential of copper oxide-reinforced natural fiber composites as biodegradable, antimicrobial, and high-performance materials aligned with the principles of clean and sustainable engineering.
用氧化铜纳米颗粒可持续增强Henequen纤维增强聚合物复合材料:清洁工程和技术的一个进步
本研究介绍了环境可持续的Henequen纤维增强聚合物复合材料与氧化铜纳米颗粒增强清洁工程应用的发展。通过手铺法制备了5种不同铜氧化物负载的复合材料,研究了它们对机械、热学和抗菌性能的影响。添加15 g氧化铜的复合材料性能优异,抗拉强度为76.19 MPa,抗折强度为81.29 MPa,冲击强度为17.92 kJ/m2,邵氏D硬度为67。显微分析证实了纤维-基质粘附性的改善和纤维拉出的减少,而热重分析表明,在500°C时炭收率为20%,热稳定性增强。元素图谱验证了纳米颗粒的整合,抗菌实验显示对铜绿假单胞菌和金黄色葡萄球菌有显著的抑制作用,这是由生物膜破坏和氧化细胞毒性支持的。这些发现证明了氧化铜增强天然纤维复合材料作为可生物降解、抗菌和高性能材料的潜力,符合清洁和可持续工程的原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信