Jonas J.M. Riksen , Antonius W. Schurink , Kalloor Joseph Francis , Cornelis Verhoef , Dirk J. Grünhagen , Gijs van Soest
{"title":"Dual-wavelength photoacoustic imaging of sentinel lymph nodes in patients with melanoma and breast cancer","authors":"Jonas J.M. Riksen , Antonius W. Schurink , Kalloor Joseph Francis , Cornelis Verhoef , Dirk J. Grünhagen , Gijs van Soest","doi":"10.1016/j.pacs.2025.100747","DOIUrl":null,"url":null,"abstract":"<div><div>Sentinel lymph node (SLN) biopsy is an essential procedure for accurate disease staging and treatment planning in patients with melanoma and breast cancer. Conventional preoperative imaging primarily utilizes lymphoscintigraphy with technetium-99m (Tc-99m), which presents several limitations, including radiation exposure, logistical challenges, and potential delays in surgical workflow. Photoacoustic imaging (PAI) has emerged as a promising alternative, leveraging optical contrast provided by indocyanine green (ICG). A feasibility study was conducted at Erasmus MC, University Medical Center Rotterdam, to assess the potential of dual-wavelength PAI for SLN mapping. PAI was employed to perform spectroscopic measurements in healthy volunteers, supporting the development of an optimal excitation protocol. Subsequently, in the patient phase, SLN mapping was performed using PAI with ICG, and the results were compared to the standard-of-care method utilizing Tc-99m. The excitation wavelengths of 800 nm and 860 nm were selected for ratiometric imaging to effectively visualize ICG while suppressing clutter from hemoglobin and melanin. Among the eleven evaluated sentinel nodes, seven were successfully identified using PAI. The maximum SLN detection depth achieved with PAI was 22 mm. This study illustrates the feasibility of ICG-enhanced dual-wavelength PAI for preoperative SLN mapping in patients with melanoma and breast cancer, as an alternative to lymphoscintigraphy. Analysis of false-negative detections suggests improvements to PAI and optimal patient selection. The proposed ratiometric PAI methodology, compared to multiwavelength spectroscopic imaging, enables faster imaging speeds and facilitates the transition to cheaper light sources.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"45 ","pages":"Article 100747"},"PeriodicalIF":6.8000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000709","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sentinel lymph node (SLN) biopsy is an essential procedure for accurate disease staging and treatment planning in patients with melanoma and breast cancer. Conventional preoperative imaging primarily utilizes lymphoscintigraphy with technetium-99m (Tc-99m), which presents several limitations, including radiation exposure, logistical challenges, and potential delays in surgical workflow. Photoacoustic imaging (PAI) has emerged as a promising alternative, leveraging optical contrast provided by indocyanine green (ICG). A feasibility study was conducted at Erasmus MC, University Medical Center Rotterdam, to assess the potential of dual-wavelength PAI for SLN mapping. PAI was employed to perform spectroscopic measurements in healthy volunteers, supporting the development of an optimal excitation protocol. Subsequently, in the patient phase, SLN mapping was performed using PAI with ICG, and the results were compared to the standard-of-care method utilizing Tc-99m. The excitation wavelengths of 800 nm and 860 nm were selected for ratiometric imaging to effectively visualize ICG while suppressing clutter from hemoglobin and melanin. Among the eleven evaluated sentinel nodes, seven were successfully identified using PAI. The maximum SLN detection depth achieved with PAI was 22 mm. This study illustrates the feasibility of ICG-enhanced dual-wavelength PAI for preoperative SLN mapping in patients with melanoma and breast cancer, as an alternative to lymphoscintigraphy. Analysis of false-negative detections suggests improvements to PAI and optimal patient selection. The proposed ratiometric PAI methodology, compared to multiwavelength spectroscopic imaging, enables faster imaging speeds and facilitates the transition to cheaper light sources.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.