Preventing supercritical CO2 boiler overtemperature: A thermal inertia ratio (Xi) criterion for predicting heat transfer deterioration in gas-like region

IF 9.4 1区 工程技术 Q1 ENERGY & FUELS
Beichen Yu , Yong Chen , Meng Zhu , Lei Chen , Kai Xu , Jun Xu , Long Jiang , Yi Wang , Sheng Su , Song Hu , Jun Xiang
{"title":"Preventing supercritical CO2 boiler overtemperature: A thermal inertia ratio (Xi) criterion for predicting heat transfer deterioration in gas-like region","authors":"Beichen Yu ,&nbsp;Yong Chen ,&nbsp;Meng Zhu ,&nbsp;Lei Chen ,&nbsp;Kai Xu ,&nbsp;Jun Xu ,&nbsp;Long Jiang ,&nbsp;Yi Wang ,&nbsp;Sheng Su ,&nbsp;Song Hu ,&nbsp;Jun Xiang","doi":"10.1016/j.energy.2025.137182","DOIUrl":null,"url":null,"abstract":"<div><div>Supercritical carbon dioxide (S-CO<sub>2</sub>) cycle technology provides high efficiency and flexibility, making it a promising option for advanced coal-fired power generation. However, uncertainties in convective heat transfer characteristics of S-CO<sub>2</sub> under typical operating conditions (pressures of 9–33 MPa and temperatures of 90–650 °C, gas-like region) cause furnace wall overheating issues. This study investigated convective heat transfer behavior in the gas-like region S-CO<sub>2</sub> within a vertical upward tube through experimental and numerical methods, focusing on heat transfer deterioration mechanisms. Results indicated that deterioration occurs under low mass flow rate, high heat flux, and inlet temperatures near the pseudo-critical point. Theoretical analysis suggested that the suppression of boundary layer turbulence mixing is the primary reason for this deterioration. Building on our previous work defining the thermal inertia ratio number <em>Xi</em> to indicate relative turbulence intensity in non-isothermal S-CO<sub>2</sub>, we proposed a new discriminated method for heat transfer deterioration. Additionally, a high-accuracy correlation for convective heat transfer was established using 2592 data sets, with 76.50 % and 96.80 % of calculated values falling within 10 % and 20 % error ranges. The established criterion and correlation for gas-like region S-CO<sub>2</sub> offer theoretical support to address furnace overheating issues, improving safety and economic performance of S-CO<sub>2</sub> boilers.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"333 ","pages":"Article 137182"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225028245","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Supercritical carbon dioxide (S-CO2) cycle technology provides high efficiency and flexibility, making it a promising option for advanced coal-fired power generation. However, uncertainties in convective heat transfer characteristics of S-CO2 under typical operating conditions (pressures of 9–33 MPa and temperatures of 90–650 °C, gas-like region) cause furnace wall overheating issues. This study investigated convective heat transfer behavior in the gas-like region S-CO2 within a vertical upward tube through experimental and numerical methods, focusing on heat transfer deterioration mechanisms. Results indicated that deterioration occurs under low mass flow rate, high heat flux, and inlet temperatures near the pseudo-critical point. Theoretical analysis suggested that the suppression of boundary layer turbulence mixing is the primary reason for this deterioration. Building on our previous work defining the thermal inertia ratio number Xi to indicate relative turbulence intensity in non-isothermal S-CO2, we proposed a new discriminated method for heat transfer deterioration. Additionally, a high-accuracy correlation for convective heat transfer was established using 2592 data sets, with 76.50 % and 96.80 % of calculated values falling within 10 % and 20 % error ranges. The established criterion and correlation for gas-like region S-CO2 offer theoretical support to address furnace overheating issues, improving safety and economic performance of S-CO2 boilers.
防止超临界CO2锅炉过温:一种预测类气区传热恶化的热惯性比(Xi)准则
超临界二氧化碳(S-CO2)循环技术提供了高效率和灵活性,使其成为先进燃煤发电的一个有前途的选择。然而,在典型操作条件下(压力9-33 MPa,温度90-650℃,气体区),S-CO2对流换热特性的不确定性导致炉壁过热问题。本文通过实验和数值方法研究了垂直向上管内类气体区S-CO2的对流换热行为,重点研究了换热恶化机制。结果表明,在低质量流量、高热流密度和进口温度接近伪临界点时,会发生劣化。理论分析认为,抑制边界层湍流混合是造成这种恶化的主要原因。在我们之前定义热惯性比Xi来表示非等温S-CO2中相对湍流强度的工作的基础上,我们提出了一种新的传热恶化判别方法。此外,利用2592个数据集建立了高精度的对流换热相关性,其中76.50%和96.80%的计算值在10%和20%的误差范围内。建立了类气区S-CO2的判据和相关性,为解决炉内过热问题,提高S-CO2锅炉的安全性和经济性提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信