CFD and Machine learning-based predictive modeling of natural convection in non-Newtonian nano-encapsulated phase change material within an Enclosure with a corrugated heated cylinder
Md. Mejbah Ullah Chowdhury , Jawad Ibn Ahad , Md. Mamun Molla , Preetom Nag , Azad Rahman
{"title":"CFD and Machine learning-based predictive modeling of natural convection in non-Newtonian nano-encapsulated phase change material within an Enclosure with a corrugated heated cylinder","authors":"Md. Mejbah Ullah Chowdhury , Jawad Ibn Ahad , Md. Mamun Molla , Preetom Nag , Azad Rahman","doi":"10.1016/j.applthermaleng.2025.127240","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing heat transfer and energy storage presents challenges in renewable energy applications. This study examines the thermal efficiency of power-law non-Newtonian nano-encapsulated phase change materials (NEPCM) in a cavity with a corrugated cylinder under natural convection. A non-dimensional framework was developed using the Galerkin finite element method (GFEM), with Polyethylene Glycol (PEG) as the base fluid. Machine learning-based predictive modeling was integrated with computational fluid dynamics (CFD) framework to provide a more reliable approach. The study numerically examined the effect of different non-dimensional parameters, including Rayleigh number <span><math><mrow><mo>(</mo><mi>R</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></mrow></math></span>, Hartmann number <span><math><mrow><mo>(</mo><mi>H</mi><mi>a</mi><mo>=</mo><mn>0</mn><mo>−</mo><mn>90</mn><mo>)</mo></mrow></math></span>, power-law index <span><math><mrow><mo>(</mo><mi>n</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>−</mo><mn>1</mn><mo>.</mo><mn>4</mn><mo>)</mo></mrow></math></span>, Prandtl number <span><math><mrow><mo>(</mo><mi>P</mi><mi>r</mi><mo>=</mo><mn>200</mn><mo>)</mo></mrow></math></span>, Stefan number <span><math><mrow><mo>(</mo><mi>S</mi><mi>t</mi><mi>e</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>313</mn><mo>)</mo></mrow></math></span>, and fusion temperature <span><math><mrow><mo>(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>8</mn><mo>)</mo></mrow></math></span>. It examines streamline, isotherm, entropy generation, heat capacity ratio <span><math><mrow><mo>(</mo><mi>C</mi><mi>r</mi><mo>)</mo></mrow></math></span>, Nusselt number <span><math><mrow><mo>(</mo><mi>N</mi><mi>u</mi><mo>)</mo></mrow></math></span>, and Bejan number <span><math><mrow><mo>(</mo><mover><mrow><mi>B</mi><mi>e</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></math></span>. Five machine learning models-Decision Tree, Random Forest, KNN, XGBoost, and LightGBM-were used to predict fluid behavior. Results show that increasing <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> reduces vortices, bringing NEPCM’s heat transient phase closer to the cylinder. Higher <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> shrinks the melting region, and <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> peaks at <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>, decreasing with higher <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> due to the magnetic field. At <span><math><mrow><mi>H</mi><mi>a</mi><mo>=</mo><mn>90</mn></mrow></math></span>, <span><math><mover><mrow><mi>N</mi><mi>u</mi></mrow><mo>¯</mo></mover></math></span> drops by 65.88% in the shear-thinning phase <span><math><mrow><mo>(</mo><mi>n</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>)</mo></mrow></math></span>. Additionally, <span><math><mover><mrow><mi>N</mi><mi>u</mi></mrow><mo>¯</mo></mover></math></span> is reduced by 17.35% as the fluid transitions from the shear-thinning phase <span><math><mrow><mo>(</mo><mi>n</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>)</mo></mrow></math></span> to the shear-thickening phase <span><math><mrow><mo>(</mo><mi>n</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>4</mn><mo>)</mo></mrow></math></span>. The power-law index increases <span><math><mover><mrow><mi>B</mi><mi>e</mi></mrow><mo>¯</mo></mover></math></span>. Random Forest achieved the highest <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> (0.9959) for <span><math><mover><mrow><mi>N</mi><mi>u</mi></mrow><mo>¯</mo></mover></math></span>, while Decision Tree, Random Forest, and LightGBM showed superior accuracy for <span><math><mover><mrow><mi>B</mi><mi>e</mi></mrow><mo>¯</mo></mover></math></span>. These ML models guarantee quick and precise predictions and act as a roadmap for following fluid dynamics and thermal management research. The interdisciplinary nature of the study, combining GFEM, NEPCM, power-law fluids, and several machine learning models, establishes a benchmark for advancing computational and data-driven approaches to solving challenging engineering problems.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"278 ","pages":"Article 127240"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125018320","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing heat transfer and energy storage presents challenges in renewable energy applications. This study examines the thermal efficiency of power-law non-Newtonian nano-encapsulated phase change materials (NEPCM) in a cavity with a corrugated cylinder under natural convection. A non-dimensional framework was developed using the Galerkin finite element method (GFEM), with Polyethylene Glycol (PEG) as the base fluid. Machine learning-based predictive modeling was integrated with computational fluid dynamics (CFD) framework to provide a more reliable approach. The study numerically examined the effect of different non-dimensional parameters, including Rayleigh number , Hartmann number , power-law index , Prandtl number , Stefan number , and fusion temperature . It examines streamline, isotherm, entropy generation, heat capacity ratio , Nusselt number , and Bejan number . Five machine learning models-Decision Tree, Random Forest, KNN, XGBoost, and LightGBM-were used to predict fluid behavior. Results show that increasing reduces vortices, bringing NEPCM’s heat transient phase closer to the cylinder. Higher shrinks the melting region, and peaks at , decreasing with higher due to the magnetic field. At , drops by 65.88% in the shear-thinning phase . Additionally, is reduced by 17.35% as the fluid transitions from the shear-thinning phase to the shear-thickening phase . The power-law index increases . Random Forest achieved the highest (0.9959) for , while Decision Tree, Random Forest, and LightGBM showed superior accuracy for . These ML models guarantee quick and precise predictions and act as a roadmap for following fluid dynamics and thermal management research. The interdisciplinary nature of the study, combining GFEM, NEPCM, power-law fluids, and several machine learning models, establishes a benchmark for advancing computational and data-driven approaches to solving challenging engineering problems.
期刊介绍:
Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application.
The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.