Hui Li , Weizhong Chen , Xiaoyun Shu , Xianjun Tan , Qun Sui
{"title":"TIM-FEM-ML synthetic technology for longitudinal optimization of tunnel excavated in the interlayered rock mass","authors":"Hui Li , Weizhong Chen , Xiaoyun Shu , Xianjun Tan , Qun Sui","doi":"10.1016/j.undsp.2025.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>The layout of underground engineering objects significantly<!--> <!-->influences the stability of the surrounding rock mass and construction safety. Despite advancements toward intellectualization and informatization in design optimization and safety assessments, mechanical analysis-based engineering computations still face certain impediments. Consequently, this paper proposes a comprehensive framework integrating tunnel information modelling (TIM), finite element method (FEM) and machine learning (ML) technology to optimize the tunnel longitudinal orientation. It also delves into the specifics of addressing the challenges associated with each technology. The framework encompasses three phases: parametric modelling based on TIM, automatic numerical simulation based on FEM, and intelligent optimization leveraging ML. Initially, geometric models of the geological formations and engineering structures are constructed on the TIM platform. Subsequently, data conversion is facilitated through the proposed transformation interface. Python codes are programmed to realize automatic processing of numerical simulation and results are extracted to the ML algorithm for the prediction model. An optimization algorithm is implanted in the numerical stream file to retrieve the optimal relative intersection angle between the tunnel axis and the trend of rocks. A case study is conducted to evaluate the feasibility of the proposed framework. Results demonstrate a substantial improvement in design and optimization accuracy and efficiency. This framework holds<!--> <!-->immense<!--> <!-->potential to propel the intellectualization and informatization of underground engineering.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"23 ","pages":"Pages 327-342"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967425000480","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The layout of underground engineering objects significantly influences the stability of the surrounding rock mass and construction safety. Despite advancements toward intellectualization and informatization in design optimization and safety assessments, mechanical analysis-based engineering computations still face certain impediments. Consequently, this paper proposes a comprehensive framework integrating tunnel information modelling (TIM), finite element method (FEM) and machine learning (ML) technology to optimize the tunnel longitudinal orientation. It also delves into the specifics of addressing the challenges associated with each technology. The framework encompasses three phases: parametric modelling based on TIM, automatic numerical simulation based on FEM, and intelligent optimization leveraging ML. Initially, geometric models of the geological formations and engineering structures are constructed on the TIM platform. Subsequently, data conversion is facilitated through the proposed transformation interface. Python codes are programmed to realize automatic processing of numerical simulation and results are extracted to the ML algorithm for the prediction model. An optimization algorithm is implanted in the numerical stream file to retrieve the optimal relative intersection angle between the tunnel axis and the trend of rocks. A case study is conducted to evaluate the feasibility of the proposed framework. Results demonstrate a substantial improvement in design and optimization accuracy and efficiency. This framework holds immense potential to propel the intellectualization and informatization of underground engineering.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.