The 2017 Lesvos (Midilli) earthquake (Mw 6.3): Earthquake hazard implications from source modeling, numerical waveform simulation with regional 1D velocity structure and static stress field
{"title":"The 2017 Lesvos (Midilli) earthquake (Mw 6.3): Earthquake hazard implications from source modeling, numerical waveform simulation with regional 1D velocity structure and static stress field","authors":"Özlem Karagöz , Onur Tan","doi":"10.1016/j.pce.2025.104007","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the earthquake hazard of Lesvos Island and the Turkish coast, considering the source mechanism and rupture propagation of the June 12, 2017 Lesvos (Midilli) mainshock (Mw 6.3), its numerical waveform simulations with regional new 1D deep velocity structures, relocated seismicity, and crustal stress loading due to the destructive earthquakes. The teleseismic body waveform inversion indicates that the strike, dip, and rake of the fault are 127°, 47°, and −97°, respectively. The depth is 9 km, and the seismic moment is 3.4 × 10<sup>25</sup> dyne cm. The mainshock ruptures a 12 × 15 km<sup>2</sup> area with a maximum 1.9 m slip and 3.4 MPa average stress drop. The previous rupture models are evaluated with simulated broadband (0.05–10 Hz) ground motions based on the discrete wavenumber method, considering shallow soil amplifications. The S-wave velocity models used in the simulations between the mainshock and stations are defined with the multiple-filter method. Our bilateral rupture propagation model gives better fits for the waveform arrivals and Fourier spectrum. The waveforms’ frequency with the highest horizontal amplitude is ∼3 Hz, which agrees with the soil fundamental frequency in Vrissa village. It is concluded that the damage in Vrissa is caused by the soil structure, not rupture propagation. The earthquake clusters in the north and south of Lesvos agree with a right-lateral synthetic shear if the Psara-Lesvos and Agia-Paraskevi faults are considered the principal displacement zone of a SW-NE right-lateral strike-slip shear zone. The results infer the possibility of continuing the earthquake hazard for Lesvos Island and the western coast of Türkiye.</div></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"140 ","pages":"Article 104007"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706525001573","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the earthquake hazard of Lesvos Island and the Turkish coast, considering the source mechanism and rupture propagation of the June 12, 2017 Lesvos (Midilli) mainshock (Mw 6.3), its numerical waveform simulations with regional new 1D deep velocity structures, relocated seismicity, and crustal stress loading due to the destructive earthquakes. The teleseismic body waveform inversion indicates that the strike, dip, and rake of the fault are 127°, 47°, and −97°, respectively. The depth is 9 km, and the seismic moment is 3.4 × 1025 dyne cm. The mainshock ruptures a 12 × 15 km2 area with a maximum 1.9 m slip and 3.4 MPa average stress drop. The previous rupture models are evaluated with simulated broadband (0.05–10 Hz) ground motions based on the discrete wavenumber method, considering shallow soil amplifications. The S-wave velocity models used in the simulations between the mainshock and stations are defined with the multiple-filter method. Our bilateral rupture propagation model gives better fits for the waveform arrivals and Fourier spectrum. The waveforms’ frequency with the highest horizontal amplitude is ∼3 Hz, which agrees with the soil fundamental frequency in Vrissa village. It is concluded that the damage in Vrissa is caused by the soil structure, not rupture propagation. The earthquake clusters in the north and south of Lesvos agree with a right-lateral synthetic shear if the Psara-Lesvos and Agia-Paraskevi faults are considered the principal displacement zone of a SW-NE right-lateral strike-slip shear zone. The results infer the possibility of continuing the earthquake hazard for Lesvos Island and the western coast of Türkiye.
期刊介绍:
Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001.
Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers.
The journal covers the following subject areas:
-Solid Earth and Geodesy:
(geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy).
-Hydrology, Oceans and Atmosphere:
(hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology).
-Solar-Terrestrial and Planetary Science:
(solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).