Naoki Masuda , Zachary M. Boyd , Diego Garlaschelli , Peter J. Mucha
{"title":"Introduction to correlation networks: Interdisciplinary approaches beyond thresholding","authors":"Naoki Masuda , Zachary M. Boyd , Diego Garlaschelli , Peter J. Mucha","doi":"10.1016/j.physrep.2025.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>Many empirical networks originate from correlational data, arising in domains as diverse as psychology, neuroscience, genomics, microbiology, finance, and climate science. Specialized algorithms and theory have been developed in different application domains for working with such networks, as well as in statistics, network science, and computer science, often with limited communication between practitioners in different fields. This leaves significant room for cross-pollination across disciplines. A central challenge is that it is not always clear how to best transform correlation matrix data into networks for the application at hand, and probably the most widespread method, i.e., thresholding on the correlation value to create either unweighted or weighted networks, suffers from multiple problems. In this article, we review various methods of constructing and analyzing correlation networks, ranging from thresholding and its improvements to weighted networks, regularization, dynamic correlation networks, threshold-free approaches, comparison with null models, and more. Finally, we propose and discuss recommended practices and a variety of key open questions currently confronting this field.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1136 ","pages":"Pages 1-39"},"PeriodicalIF":29.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157325001784","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many empirical networks originate from correlational data, arising in domains as diverse as psychology, neuroscience, genomics, microbiology, finance, and climate science. Specialized algorithms and theory have been developed in different application domains for working with such networks, as well as in statistics, network science, and computer science, often with limited communication between practitioners in different fields. This leaves significant room for cross-pollination across disciplines. A central challenge is that it is not always clear how to best transform correlation matrix data into networks for the application at hand, and probably the most widespread method, i.e., thresholding on the correlation value to create either unweighted or weighted networks, suffers from multiple problems. In this article, we review various methods of constructing and analyzing correlation networks, ranging from thresholding and its improvements to weighted networks, regularization, dynamic correlation networks, threshold-free approaches, comparison with null models, and more. Finally, we propose and discuss recommended practices and a variety of key open questions currently confronting this field.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.