Assessing the influence of HIV on the spread of Mpox disease

IF 1.9 4区 数学 Q2 BIOLOGY
Arsène Jaurès Ouemba Tassé , Yibetal Terefe , Jean Lubuma
{"title":"Assessing the influence of HIV on the spread of Mpox disease","authors":"Arsène Jaurès Ouemba Tassé ,&nbsp;Yibetal Terefe ,&nbsp;Jean Lubuma","doi":"10.1016/j.mbs.2025.109499","DOIUrl":null,"url":null,"abstract":"<div><div>Mpox, originating primarily in African rodents, has led to human outbreaks over recent years. This study presents a mathematical model for Mpox, distinguishing between individuals with and without HIV who are susceptible. We explore scenarios involving both rodent-to-human transmission and those without it. In the absence of this transmission route, the model undergoes a backward bifurcation, suggesting that reducing the basic reproduction number below one would not eliminate the disease unless further control strategies are used. With the account of rodent-to-human transmission, if Mpox is endemic in the rodent population, a unique interior equilibrium, globally asymptotically stable, exists, requiring targeted interventions like quarantine or vaccination for people with HIV (PWH) for disease control. Model validation using USA case data (May 2022–July 2024) shows that both human-to-human and rodent-to-human transmissions prevail in the population, but the disease is not endemic. Projections indicate that the outbreak will be overcome by May 2027, with a total of 35,811 cases. We design a nonstandard finite difference (NSFD) scheme which is dynamically consistent with respect to the qualitative properties of the continuous model. Numerical simulations demonstrate that reducing the recruitment rate of PWH is essential, and rodent-to-human transmission is identified as highly influential in increasing the number of Mpox cases.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"387 ","pages":"Article 109499"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425001257","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mpox, originating primarily in African rodents, has led to human outbreaks over recent years. This study presents a mathematical model for Mpox, distinguishing between individuals with and without HIV who are susceptible. We explore scenarios involving both rodent-to-human transmission and those without it. In the absence of this transmission route, the model undergoes a backward bifurcation, suggesting that reducing the basic reproduction number below one would not eliminate the disease unless further control strategies are used. With the account of rodent-to-human transmission, if Mpox is endemic in the rodent population, a unique interior equilibrium, globally asymptotically stable, exists, requiring targeted interventions like quarantine or vaccination for people with HIV (PWH) for disease control. Model validation using USA case data (May 2022–July 2024) shows that both human-to-human and rodent-to-human transmissions prevail in the population, but the disease is not endemic. Projections indicate that the outbreak will be overcome by May 2027, with a total of 35,811 cases. We design a nonstandard finite difference (NSFD) scheme which is dynamically consistent with respect to the qualitative properties of the continuous model. Numerical simulations demonstrate that reducing the recruitment rate of PWH is essential, and rodent-to-human transmission is identified as highly influential in increasing the number of Mpox cases.
评估艾滋病毒对痘病传播的影响
Mpox主要起源于非洲啮齿类动物,近年来已导致人间暴发。这项研究提出了一个m痘的数学模型,区分了感染和不感染艾滋病毒的易感个体。我们探讨了啮齿动物向人类传播和没有啮齿动物向人类传播的情况。在缺乏这种传播途径的情况下,该模型经历了向后分叉,这表明除非采用进一步的控制策略,否则将基本繁殖数减少到1以下不会消除疾病。考虑到啮齿动物到人类的传播,如果m痘在啮齿动物种群中是地方性的,那么就存在一个独特的内部平衡,全球渐近稳定,需要有针对性的干预措施,如对艾滋病毒感染者(PWH)进行隔离或接种疫苗以控制疾病。使用美国病例数据(2022年5月至2024年7月)进行的模型验证表明,人群中普遍存在人与人之间和啮齿动物人与人之间的传播,但该疾病并非地方性流行。预测显示,到2027年5月,疫情将被克服,总数为35811例。针对连续模型的定性性质,设计了一种动态一致的非标准有限差分格式。数值模拟表明,降低PWH的招募率至关重要,啮齿动物到人的传播被认为是增加Mpox病例数量的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信