Arsène Jaurès Ouemba Tassé , Yibetal Terefe , Jean Lubuma
{"title":"Assessing the influence of HIV on the spread of Mpox disease","authors":"Arsène Jaurès Ouemba Tassé , Yibetal Terefe , Jean Lubuma","doi":"10.1016/j.mbs.2025.109499","DOIUrl":null,"url":null,"abstract":"<div><div>Mpox, originating primarily in African rodents, has led to human outbreaks over recent years. This study presents a mathematical model for Mpox, distinguishing between individuals with and without HIV who are susceptible. We explore scenarios involving both rodent-to-human transmission and those without it. In the absence of this transmission route, the model undergoes a backward bifurcation, suggesting that reducing the basic reproduction number below one would not eliminate the disease unless further control strategies are used. With the account of rodent-to-human transmission, if Mpox is endemic in the rodent population, a unique interior equilibrium, globally asymptotically stable, exists, requiring targeted interventions like quarantine or vaccination for people with HIV (PWH) for disease control. Model validation using USA case data (May 2022–July 2024) shows that both human-to-human and rodent-to-human transmissions prevail in the population, but the disease is not endemic. Projections indicate that the outbreak will be overcome by May 2027, with a total of 35,811 cases. We design a nonstandard finite difference (NSFD) scheme which is dynamically consistent with respect to the qualitative properties of the continuous model. Numerical simulations demonstrate that reducing the recruitment rate of PWH is essential, and rodent-to-human transmission is identified as highly influential in increasing the number of Mpox cases.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"387 ","pages":"Article 109499"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425001257","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mpox, originating primarily in African rodents, has led to human outbreaks over recent years. This study presents a mathematical model for Mpox, distinguishing between individuals with and without HIV who are susceptible. We explore scenarios involving both rodent-to-human transmission and those without it. In the absence of this transmission route, the model undergoes a backward bifurcation, suggesting that reducing the basic reproduction number below one would not eliminate the disease unless further control strategies are used. With the account of rodent-to-human transmission, if Mpox is endemic in the rodent population, a unique interior equilibrium, globally asymptotically stable, exists, requiring targeted interventions like quarantine or vaccination for people with HIV (PWH) for disease control. Model validation using USA case data (May 2022–July 2024) shows that both human-to-human and rodent-to-human transmissions prevail in the population, but the disease is not endemic. Projections indicate that the outbreak will be overcome by May 2027, with a total of 35,811 cases. We design a nonstandard finite difference (NSFD) scheme which is dynamically consistent with respect to the qualitative properties of the continuous model. Numerical simulations demonstrate that reducing the recruitment rate of PWH is essential, and rodent-to-human transmission is identified as highly influential in increasing the number of Mpox cases.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.