Klein-Gordon particles in a nonuniform external magnetic field in Bonnor-Melvin rainbow gravity background

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Omar Mustafa , Abdullah Guvendi
{"title":"Klein-Gordon particles in a nonuniform external magnetic field in Bonnor-Melvin rainbow gravity background","authors":"Omar Mustafa ,&nbsp;Abdullah Guvendi","doi":"10.1016/j.nuclphysb.2025.116998","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the effect of rainbow gravity on Klein-Gordon (KG) bosons in a quantized nonuniform magnetic field in the background of Bonnor-Melvin (BM) spacetime with a cosmological constant. In the process, we show that the BM spacetime introduces domain walls (i.e., infinitely impenetrable hard walls) at <span><math><mi>r</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>r</mi><mo>=</mo><mi>π</mi><mo>/</mo><msqrt><mrow><mn>2</mn><mi>Λ</mi></mrow></msqrt></math></span>, as a consequence of the effective gravitational potential field generated by such a magnetized BM spacetime. As a result, the motion of KG particles/antiparticles is restricted indefinitely within the range <span><math><mi>r</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>/</mo><msqrt><mrow><mn>2</mn><mi>Λ</mi></mrow></msqrt><mo>]</mo></math></span>, and the particles and antiparticles cannot be found elsewhere. Next, we provide a conditionally exact solution in the form of the general Heun function <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>,</mo><mi>δ</mi><mo>,</mo><mi>z</mi><mo>)</mo></math></span>. Within the BM domain walls and under the condition of exact solvability, we study the effects of rainbow gravity on KG bosonic fields in a quantized nonuniform external magnetic field in the BM spacetime background. We use three pairs of rainbow functions: <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mover><mrow><mi>β</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>|</mo><mi>E</mi><mo>|</mo><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>h</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>; and <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>h</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msqrt><mrow><mn>1</mn><mo>−</mo><mover><mrow><mi>β</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>|</mo><mi>E</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>υ</mi></mrow></msup></mrow></msqrt></math></span>, with <span><math><mi>υ</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>, where <span><math><mi>u</mi><mo>=</mo><mo>|</mo><mi>E</mi><mo>|</mo><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, <span><math><mover><mrow><mi>β</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mi>β</mi><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, and <em>β</em> is the rainbow parameter. We find that such pairs of rainbow functions, <span><math><mo>(</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mi>h</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>)</mo></math></span>, fully comply with the theory of rainbow gravity, ensuring that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the maximum possible energy for particles and antiparticles alike. Moreover, we show that the corresponding bosonic states form magnetized, rotating vortices, as intriguing consequences of such a magnetized BM spacetime background.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1018 ","pages":"Article 116998"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S055032132500207X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the effect of rainbow gravity on Klein-Gordon (KG) bosons in a quantized nonuniform magnetic field in the background of Bonnor-Melvin (BM) spacetime with a cosmological constant. In the process, we show that the BM spacetime introduces domain walls (i.e., infinitely impenetrable hard walls) at r=0 and r=π/2Λ, as a consequence of the effective gravitational potential field generated by such a magnetized BM spacetime. As a result, the motion of KG particles/antiparticles is restricted indefinitely within the range r[0,π/2Λ], and the particles and antiparticles cannot be found elsewhere. Next, we provide a conditionally exact solution in the form of the general Heun function HG(a,q,α,β,γ,δ,z). Within the BM domain walls and under the condition of exact solvability, we study the effects of rainbow gravity on KG bosonic fields in a quantized nonuniform external magnetic field in the BM spacetime background. We use three pairs of rainbow functions: f(u)=(1β˜|E|)1,h(u)=1; and f(u)=1,h(u)=1β˜|E|υ, with υ=1,2, where u=|E|/Ep, β˜=β/Ep, and β is the rainbow parameter. We find that such pairs of rainbow functions, (f(u),h(u)), fully comply with the theory of rainbow gravity, ensuring that Ep is the maximum possible energy for particles and antiparticles alike. Moreover, we show that the corresponding bosonic states form magnetized, rotating vortices, as intriguing consequences of such a magnetized BM spacetime background.
波诺-梅尔文彩虹重力背景下非均匀外磁场中的克莱因-戈登粒子
研究了具有宇宙常数的波诺-梅尔文(BM)时空背景下量子化非均匀磁场中彩虹引力对克莱因-戈登(KG)玻色子的影响。在此过程中,我们证明了BM时空在r=0和r=π/2Λ处引入了畴壁(即无限不可穿透的硬壁),这是由这种磁化BM时空产生的有效引力势场造成的。因此,KG粒子/反粒子的运动被无限地限制在r∈[0,π/2Λ]的范围内,粒子和反粒子无法在其他地方找到。接下来,我们给出了一般Heun函数HG(a,q,α,β,γ,δ,z)的条件精确解。在精确可解条件下,研究了BM时空背景下量子化非均匀外磁场中彩虹引力对KG玻色子场的影响。我们使用三对彩虹函数:f(u)=(1−β ~ |E|)−1,h(u)=1;和f (u) = 1, h (u) = 1−β˜| E |υ,υ= 1,2,E u = | | / Ep,β˜=β/ Ep,β是彩虹参数。我们发现这样的彩虹函数对(f(u),h(u))完全符合彩虹引力理论,确保Ep是粒子和反粒子的最大可能能量。此外,我们证明了相应的玻色子态形成磁化的旋转漩涡,这是这种磁化BM时空背景的有趣结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信