Small compacts

IF 0.6 4区 数学 Q3 MATHEMATICS
Angel Calderón-Villalobos , Iván Sánchez
{"title":"Small compacts","authors":"Angel Calderón-Villalobos ,&nbsp;Iván Sánchez","doi":"10.1016/j.topol.2025.109490","DOIUrl":null,"url":null,"abstract":"<div><div>For a subset <em>A</em> of an almost topological group <em>G</em>, the Hattori space <span><math><mi>H</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is a topological space whose underlying set is <em>G</em> and whose topology <span><math><mi>τ</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is defined as follows: if <span><math><mi>x</mi><mo>∈</mo><mi>A</mi></math></span> (respectively, <span><math><mi>x</mi><mo>∉</mo><mi>A</mi></math></span>), then the neighborhoods of <em>x</em> in <span><math><mi>H</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> are the same neighborhoods of <em>x</em> in the reflection group (respectively, <em>G</em>). In this paper, we show the following:<ul><li><span>i)</span><span><div><em>G</em> is an almost topological group if and only if the Hattori topology <span><math><mi>τ</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> can be defined on <em>G</em> for each subset <em>A</em> of <em>G</em>.</div></span></li><li><span>ii)</span><span><div>If <em>A</em> is a subset of a proper almost topological group <em>G</em>, then <span><math><mi>H</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is locally compact if and only if <span><math><msub><mrow><mi>G</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> is locally compact, <span><math><mi>G</mi><mo>∖</mo><mi>A</mi></math></span> is closed in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> and for each <span><math><mi>x</mi><mo>∈</mo><mi>G</mi><mo>∖</mo><mi>A</mi></math></span>, there exists <span><math><mi>U</mi><mo>∈</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> such that <span><math><msup><mrow><mover><mrow><mi>U</mi><mi>x</mi></mrow><mo>‾</mo></mover></mrow><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msup><mo>∩</mo><mo>(</mo><mi>G</mi><mo>∖</mo><mi>A</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>x</mi><mo>}</mo></math></span> and <span><math><msup><mrow><mover><mrow><mi>U</mi><mi>x</mi></mrow><mo>‾</mo></mover></mrow><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msup><mo>∖</mo><mi>V</mi><mi>x</mi></math></span> is closed in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span>, for each <span><math><mi>V</mi><mo>∈</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>.</div></span></li><li><span>iii)</span><span><div>If <em>A</em> is a subset of a proper almost topological group <em>G</em> such that <span><math><msub><mrow><mi>G</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> has countable pseudocharacter, then <span><math><mi>H</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> has small compacts if and only if <em>A</em> has small compacts.</div></span></li></ul> Moreover, we study the property of being <em>σ</em>-compact in Hattori spaces <span><math><mi>H</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, where <em>A</em> is a subset of an almost topological group <em>G</em>. We show that if <em>G</em> is a proper almost topological group, then <em>G</em> is <em>σ</em>-compact if and only if <em>G</em> is countable.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109490"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125002883","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a subset A of an almost topological group G, the Hattori space H(A) is a topological space whose underlying set is G and whose topology τ(A) is defined as follows: if xA (respectively, xA), then the neighborhoods of x in H(A) are the same neighborhoods of x in the reflection group (respectively, G). In this paper, we show the following:
  • i)
    G is an almost topological group if and only if the Hattori topology τ(A) can be defined on G for each subset A of G.
  • ii)
    If A is a subset of a proper almost topological group G, then H(A) is locally compact if and only if G is locally compact, GA is closed in G and for each xGA, there exists Uβe such that Uxτ(GA)={x} and UxτVx is closed in G, for each Vβe.
  • iii)
    If A is a subset of a proper almost topological group G such that G has countable pseudocharacter, then H(A) has small compacts if and only if A has small compacts.
Moreover, we study the property of being σ-compact in Hattori spaces H(A), where A is a subset of an almost topological group G. We show that if G is a proper almost topological group, then G is σ-compact if and only if G is countable.
小的契约
对于概拓扑群G的子集a, Hattori空间H(a)是一个底层集合为G的拓扑空间,其拓扑τ(a)定义如下:若x∈a(分别,x∈a),则x在H(a)中的邻域与x在反射群(分别,G)中的邻域相同。在本文中,我们证明了以下内容:i)G是一个概拓扑群,当且仅当对于G的每个子集A, Hattori拓扑τ(A)可以在G上定义,ii)如果A是一个适当概拓扑群G的子集,那么H(A)是局部紧致的当且仅当G是局部紧致的,G∈A在G中是闭的,并且对于每个x∈G∈A,存在U∈βe使得Ux∈τ∩(G∈A)={x}并且Ux∈τ∈Vx在G中是闭的;对于每个V∈βe.iii)如果A是一个适当概拓扑群G的子集,使得G具有可数伪特征,则H(A)具有小紧当且仅当A具有小紧。此外,我们研究了Hattori空间H(A)中σ-紧性的性质,其中A是一个概拓扑群G的子集。我们证明了如果G是一个适当的概拓扑群,那么G是σ-紧性的当且仅当G是可数的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信