Felipe Machado de Sant'Anna , Ashma Chakrawarti , Bradd J. Haley , John Barlow
{"title":"The resistome of pasteurized and raw milk cheeses from the state of Vermont","authors":"Felipe Machado de Sant'Anna , Ashma Chakrawarti , Bradd J. Haley , John Barlow","doi":"10.1016/j.ijfoodmicro.2025.111333","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the resistome dynamics in cheese production, focusing on both raw milk and pasteurized varieties comparing a standard and lytic method of DNA extraction. Metagenomic analysis revealed the presence of single nucleotide polymorphism (SNP) confirmed antimicrobial resistance genes (ARGs) in core and rind samples of cheeses at different stages of ripening. No statistical significance was found between the extraction methods for antimicrobial resistance gene (ARG) classes. In pasteurized cheese, the resistome was influenced by the initial microbial composition and ripening period, with limited ARGs detected due to pasteurization. Nonetheless, detection of class B β-lactamase and Fosfomycin B resistance genes was observed in the pasteurized cheese core, possibly harbored by <em>Bacillus cereus</em>. Raw milk cheese exhibited a distinct resistome profile, with fluctuations in macrolide and oxazolidinone resistance genes associated with changes in microbial populations during ripening. Notably, the likely presence of multi-drug resistance genes in <em>Lactococcus lactis</em> highlights the importance of understanding resistance mechanisms in starter cultures. The study emphasizes the need for antimicrobial stewardship and hygiene practices in dairy production to mitigate the spread of resistance genes. Despite sequencing biases, this research contributes valuable insights into the cheese resistome, advocating for future studies to employ enhanced sequencing methods for comprehensive analysis and to develop practical strategies for resistance management in dairy products.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"441 ","pages":"Article 111333"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160525002788","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the resistome dynamics in cheese production, focusing on both raw milk and pasteurized varieties comparing a standard and lytic method of DNA extraction. Metagenomic analysis revealed the presence of single nucleotide polymorphism (SNP) confirmed antimicrobial resistance genes (ARGs) in core and rind samples of cheeses at different stages of ripening. No statistical significance was found between the extraction methods for antimicrobial resistance gene (ARG) classes. In pasteurized cheese, the resistome was influenced by the initial microbial composition and ripening period, with limited ARGs detected due to pasteurization. Nonetheless, detection of class B β-lactamase and Fosfomycin B resistance genes was observed in the pasteurized cheese core, possibly harbored by Bacillus cereus. Raw milk cheese exhibited a distinct resistome profile, with fluctuations in macrolide and oxazolidinone resistance genes associated with changes in microbial populations during ripening. Notably, the likely presence of multi-drug resistance genes in Lactococcus lactis highlights the importance of understanding resistance mechanisms in starter cultures. The study emphasizes the need for antimicrobial stewardship and hygiene practices in dairy production to mitigate the spread of resistance genes. Despite sequencing biases, this research contributes valuable insights into the cheese resistome, advocating for future studies to employ enhanced sequencing methods for comprehensive analysis and to develop practical strategies for resistance management in dairy products.
期刊介绍:
The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.