Unlocking the potential of cellulose-based composite materials for supercapacitors and sensing technologies: A Review

IF 6.5 Q1 CHEMISTRY, APPLIED
Tekalign Aregu Tikish , Abera Demeke Ambaye , Touhami Mokrani , Eno E. Ebenso
{"title":"Unlocking the potential of cellulose-based composite materials for supercapacitors and sensing technologies: A Review","authors":"Tekalign Aregu Tikish ,&nbsp;Abera Demeke Ambaye ,&nbsp;Touhami Mokrani ,&nbsp;Eno E. Ebenso","doi":"10.1016/j.carpta.2025.100926","DOIUrl":null,"url":null,"abstract":"<div><div>Cellulose aerogels exhibit a specific surface area (10–975 m² <em>g</em><sup>−1</sup>), porosity (84.0–99.9 %), and density (0.0005–0.35 g cm-³) comparable to synthetic polymer aerogels, but uniquely offer higher compressive strength (5.2 kPa–16.67 MPa) alongside superior biodegradability. Cellulose-based aerogels have experienced significant growth in research interest over the past decade. Publications in this field have dramatically increased from 19 in 2010 to over 385 in 2024, highlighting their unique physicochemical characteristics. Renowned for their porous structure, low thermal conductivity, low density, and exceptional adsorption capabilities for water and organic solvents, cellulose aerogels hold substantial promise for high-performance materials. This review, therefore, aims to illustrate three key aerogel processing routes: dispersion, regeneration, and cellulose derivative methods, alongside five prominent modification techniques for aerogel composites. Furthermore, it briefly discusses the application of cellulose aerogels as a core component in supercapacitors (electrodes, separators, and electrolytes), showcasing examples like fluorine-treated CNF achieving 409 F g⁻¹ specific capacitance with 91 % retention after 10,000 cycles. The review also examines the utilization of these aerogels in electrochemical, pressure, piezoelectric, humidity, and environmental sensors, concluding with a discussion of their potential future implications and applications.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"11 ","pages":"Article 100926"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893925002671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose aerogels exhibit a specific surface area (10–975 m² g−1), porosity (84.0–99.9 %), and density (0.0005–0.35 g cm-³) comparable to synthetic polymer aerogels, but uniquely offer higher compressive strength (5.2 kPa–16.67 MPa) alongside superior biodegradability. Cellulose-based aerogels have experienced significant growth in research interest over the past decade. Publications in this field have dramatically increased from 19 in 2010 to over 385 in 2024, highlighting their unique physicochemical characteristics. Renowned for their porous structure, low thermal conductivity, low density, and exceptional adsorption capabilities for water and organic solvents, cellulose aerogels hold substantial promise for high-performance materials. This review, therefore, aims to illustrate three key aerogel processing routes: dispersion, regeneration, and cellulose derivative methods, alongside five prominent modification techniques for aerogel composites. Furthermore, it briefly discusses the application of cellulose aerogels as a core component in supercapacitors (electrodes, separators, and electrolytes), showcasing examples like fluorine-treated CNF achieving 409 F g⁻¹ specific capacitance with 91 % retention after 10,000 cycles. The review also examines the utilization of these aerogels in electrochemical, pressure, piezoelectric, humidity, and environmental sensors, concluding with a discussion of their potential future implications and applications.

Abstract Image

释放纤维素基复合材料在超级电容器和传感技术中的潜力:综述
纤维素气凝胶的比表面积(10-975 m²g−1)、孔隙率(84.0 - 99.9%)和密度(0.0005-0.35 g cm-³)与合成聚合物气凝胶相当,但具有更高的抗压强度(5.2 kPa-16.67 MPa)和优越的生物降解性。在过去的十年中,纤维素气凝胶的研究兴趣有了显著的增长。该领域的出版物从2010年的19篇急剧增加到2024年的385篇,突出了其独特的物理化学特征。纤维素气凝胶以其多孔结构、低导热性、低密度和对水和有机溶剂的特殊吸附能力而闻名,在高性能材料方面有着巨大的前景。因此,本综述旨在说明三种关键的气凝胶加工路线:分散、再生和纤维素衍生物方法,以及五种突出的气凝胶复合材料改性技术。此外,它还简要讨论了纤维素气凝胶作为超级电容器(电极、分离器和电解质)的核心组件的应用,展示了氟处理的CNF在10,000次循环后实现409 F - 1特定电容并保持91%的例子。本文还研究了这些气凝胶在电化学、压力、压电、湿度和环境传感器中的应用,最后讨论了它们潜在的未来影响和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信