Substituted polyoxometalate-modified SnO2 for enhanced interfacial contact for high-efficiency carbon-based all inorganic perovskite solar cells

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Xueying Xu , Weilin Chen , Yinan Hou , Qunwei Tang
{"title":"Substituted polyoxometalate-modified SnO2 for enhanced interfacial contact for high-efficiency carbon-based all inorganic perovskite solar cells","authors":"Xueying Xu ,&nbsp;Weilin Chen ,&nbsp;Yinan Hou ,&nbsp;Qunwei Tang","doi":"10.1016/j.solener.2025.113750","DOIUrl":null,"url":null,"abstract":"<div><div>SnO<sub>2</sub> demonstrates three critical characteristics for photovoltaic applications, low temperature preparation process, high conductivity and high ultraviolet light stability. These superiorities makes it a preferred choice for high-performance perovskite solar cells (PSCs) as a charge transport material. However, PSCs based on SnO<sub>2</sub> still faces great challenges. Poor interface contact and interface defects are important factors for loss of efficiency and long-term stability. This study demonstrates a synergistic interface engineering in all-inorganic CsPbI<sub>2</sub>Br solar cells through strategic integration of transition-metal substituted Keggin-type polyoxometalates K<sub>6</sub>H<sub>4</sub>[SiW<sub>9</sub>O<sub>37</sub>{Ni(H<sub>2</sub>O)}<sub>3</sub> ({SiW<sub>9</sub>Ni<sub>3</sub>}) with SnO<sub>2</sub> quantum dots. The SnO<sub>2</sub>@SiW<sub>9</sub>Ni<sub>3</sub> composite electron transport layer boosts electrical conductivity through enhanced electron mobility channels. {SiW<sub>9</sub>Ni<sub>3</sub>} can also passivate interfacial defects via strong chemical bonding between terminal oxygens and undercoordinated Sn<sup>4+</sup> and reduce oxygen vacancy defects, effectively suppressing non-radiative recombination. Additionally, perovskite crystallization can be regulated by metal–oxygen coordination, which result in a pinhole-free and high quality film based on SnO<sub>2</sub>@SiW<sub>9</sub>Ni<sub>3</sub>. The target devices achieve a champion PCE of 13.09 % (vs. 10.75 % control) with a remarkable open-circuit voltage (<em>V<sub>OC</sub></em>) enhancement from 1.256 V to 1.301 V. At the same time, the optimized devices retain over 90 % initial efficiency after 600 h ambient aging, demonstrating prominent operational stability. This work establishes a polyoxometalate-driven interfacial engineering strategy for advancing high-performance all-inorganic perovskite solar cells.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"299 ","pages":"Article 113750"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25005134","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

SnO2 demonstrates three critical characteristics for photovoltaic applications, low temperature preparation process, high conductivity and high ultraviolet light stability. These superiorities makes it a preferred choice for high-performance perovskite solar cells (PSCs) as a charge transport material. However, PSCs based on SnO2 still faces great challenges. Poor interface contact and interface defects are important factors for loss of efficiency and long-term stability. This study demonstrates a synergistic interface engineering in all-inorganic CsPbI2Br solar cells through strategic integration of transition-metal substituted Keggin-type polyoxometalates K6H4[SiW9O37{Ni(H2O)}3 ({SiW9Ni3}) with SnO2 quantum dots. The SnO2@SiW9Ni3 composite electron transport layer boosts electrical conductivity through enhanced electron mobility channels. {SiW9Ni3} can also passivate interfacial defects via strong chemical bonding between terminal oxygens and undercoordinated Sn4+ and reduce oxygen vacancy defects, effectively suppressing non-radiative recombination. Additionally, perovskite crystallization can be regulated by metal–oxygen coordination, which result in a pinhole-free and high quality film based on SnO2@SiW9Ni3. The target devices achieve a champion PCE of 13.09 % (vs. 10.75 % control) with a remarkable open-circuit voltage (VOC) enhancement from 1.256 V to 1.301 V. At the same time, the optimized devices retain over 90 % initial efficiency after 600 h ambient aging, demonstrating prominent operational stability. This work establishes a polyoxometalate-driven interfacial engineering strategy for advancing high-performance all-inorganic perovskite solar cells.

Abstract Image

取代多金属氧酸盐修饰的SnO2增强了高效碳基全无机钙钛矿太阳能电池的界面接触
SnO2具有光伏应用的三个关键特性:低温制备工艺、高导电性和高紫外光稳定性。这些优点使其成为高性能钙钛矿太阳能电池(PSCs)作为电荷传输材料的首选。然而,基于SnO2的psc仍然面临着巨大的挑战。界面接触不良和界面缺陷是影响效率和长期稳定性的重要因素。本研究通过将过渡金属取代的keggin型多金属氧酸盐K6H4[SiW9O37{Ni(H2O)}3 ({SiW9Ni3})与SnO2量子点战略性集成,在全无机CsPbI2Br太阳能电池中实现了协同界面工程。SnO2@SiW9Ni3复合电子传输层通过增强电子迁移通道提高电导率。{SiW9Ni3}还可以通过末端氧与欠配位Sn4+之间的强化学键钝化界面缺陷,减少氧空位缺陷,有效抑制非辐射复合。此外,钙钛矿的结晶可以通过金属-氧配位来调节,从而产生基于SnO2@SiW9Ni3的无针孔高质量薄膜。目标器件实现了13.09%的冠军PCE(对照为10.75%),开路电压(VOC)从1.256 V显著提高到1.301 V。同时,优化后的器件在环境老化600 h后仍保持90%以上的初始效率,表现出突出的运行稳定性。这项工作建立了一种多金属氧酸盐驱动的界面工程策略,用于推进高性能的全无机钙钛矿太阳能电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信