Moment estimates for the stochastic heat equation on Cartan-Hadamard manifolds

IF 1.2 3区 数学 Q1 MATHEMATICS
Fabrice Baudoin , Hongyi Chen , Cheng Ouyang
{"title":"Moment estimates for the stochastic heat equation on Cartan-Hadamard manifolds","authors":"Fabrice Baudoin ,&nbsp;Hongyi Chen ,&nbsp;Cheng Ouyang","doi":"10.1016/j.jmaa.2025.129805","DOIUrl":null,"url":null,"abstract":"<div><div>We study the effect of curvature on the Parabolic Anderson model by posing it over a Cartan-Hadamard manifold. We first construct a family of noises white in time and colored in space indexed by a regularity parameter <em>α</em>, which we use to explore regularity requirements for well-posedness. Then, we show that conditions on the heat kernel imply an exponential in time upper bound for the moments of the solution, and a lower bound for sectional curvature implies a corresponding lower bound. These results hold if the noise is strong enough, where the needed strength of the noise is affected by sectional curvature.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129805"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005864","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the effect of curvature on the Parabolic Anderson model by posing it over a Cartan-Hadamard manifold. We first construct a family of noises white in time and colored in space indexed by a regularity parameter α, which we use to explore regularity requirements for well-posedness. Then, we show that conditions on the heat kernel imply an exponential in time upper bound for the moments of the solution, and a lower bound for sectional curvature implies a corresponding lower bound. These results hold if the noise is strong enough, where the needed strength of the noise is affected by sectional curvature.
Cartan-Hadamard流形上随机热方程的矩估计
在Cartan-Hadamard流形上研究曲率对抛物型Anderson模型的影响。我们首先构造了一组在时间上是白色的,在空间上是彩色的噪声,用正则性参数α作为索引,我们用它来探索适定性的正则性要求。然后,我们证明了热核条件暗示了解的矩的指数时间上界,以及截面曲率的下界暗示了相应的下界。如果噪声足够强,这些结果是成立的,其中所需的噪声强度受到截面曲率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信