{"title":"GrC-VMM: An intelligent framework for virtual machine migration optimization using granular computing","authors":"Seyyed Meysam Rozehkhani, Farnaz Mahan","doi":"10.1016/j.simpat.2025.103169","DOIUrl":null,"url":null,"abstract":"<div><div>Virtual Machine Migration (VMM) is a critical component in cloud computing environments, enabling dynamic resource management and system optimization. However, existing approaches often face challenges such as increased downtime, excessive resource consumption, and complex decision-making processes in heterogeneous environments. This paper presents a novel framework based on Granular Computing (GrC) principles to address these challenges through systematic VM categorization and prioritization. The proposed framework employs a three-stage approach: (1) feature extraction and granule formation, converting VM attributes such as workload, downtime sensitivity, and resource utilization into meaningful information granules; (2) granule-based decision rule generation using formal GrC methodologies; and (3) priority-based classification using weighted membership functions. Experimental evaluations conducted using CloudSim 5.0 demonstrate the framework’s effectiveness across multiple performance dimensions. The results show 92. 1% classification accuracy, 83. 7% resource utilization and reduced migration downtime of 1.9 s. The framework exhibits linear computational complexity O(N), confirming its scalability for large-scale deployments. Additionally, performance analysis under various workload patterns (resource-intensive, service-oriented, and mixed) validates the framework’s robustness and adaptability. These results suggest that the proposed GrC-based approach offers a promising solution to optimize VM migration in cloud environments while maintaining operational efficiency and service quality.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"144 ","pages":"Article 103169"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25001042","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Virtual Machine Migration (VMM) is a critical component in cloud computing environments, enabling dynamic resource management and system optimization. However, existing approaches often face challenges such as increased downtime, excessive resource consumption, and complex decision-making processes in heterogeneous environments. This paper presents a novel framework based on Granular Computing (GrC) principles to address these challenges through systematic VM categorization and prioritization. The proposed framework employs a three-stage approach: (1) feature extraction and granule formation, converting VM attributes such as workload, downtime sensitivity, and resource utilization into meaningful information granules; (2) granule-based decision rule generation using formal GrC methodologies; and (3) priority-based classification using weighted membership functions. Experimental evaluations conducted using CloudSim 5.0 demonstrate the framework’s effectiveness across multiple performance dimensions. The results show 92. 1% classification accuracy, 83. 7% resource utilization and reduced migration downtime of 1.9 s. The framework exhibits linear computational complexity O(N), confirming its scalability for large-scale deployments. Additionally, performance analysis under various workload patterns (resource-intensive, service-oriented, and mixed) validates the framework’s robustness and adaptability. These results suggest that the proposed GrC-based approach offers a promising solution to optimize VM migration in cloud environments while maintaining operational efficiency and service quality.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.