Jasper Du, Hui Chen, Jia You, Wei Hu, Jia Liu, Qiao Lu, Yong Zhang, Jie Gao, Meng-ju Lin, Connor James Ryan Foster, Eric Rao, Michael Cammer, Weiwei Yin, Shohei Koide, Catherine Pei-ju Lu, Wei Chen, Jizhong Lou, Jun Wang
{"title":"Proximity between LAG-3 and the T cell receptor guides suppression of T cell activation and autoimmunity","authors":"Jasper Du, Hui Chen, Jia You, Wei Hu, Jia Liu, Qiao Lu, Yong Zhang, Jie Gao, Meng-ju Lin, Connor James Ryan Foster, Eric Rao, Michael Cammer, Weiwei Yin, Shohei Koide, Catherine Pei-ju Lu, Wei Chen, Jizhong Lou, Jun Wang","doi":"10.1016/j.cell.2025.06.004","DOIUrl":null,"url":null,"abstract":"Therapeutically targeting pathogenic T cells in autoimmune diseases has been challenging. Although LAG-3, an inhibitory checkpoint receptor specifically expressed on activated T cells, is known to bind to major histocompatibility complex class II (MHC class II), we demonstrate that MHC class II interaction alone is insufficient for optimal LAG-3 function. Instead, LAG-3’s spatial proximity to T cell receptor (TCR) but not CD4 co-receptor, facilitated by cognate peptide-MHC class II, is crucial in mediating CD4<sup>+</sup> T cell suppression. Mechanistically, LAG-3 forms condensate with TCR signaling component CD3ε through its intracellular FSAL motif, disrupting CD3ε/lymphocyte-specific protein kinase (Lck) association. To exploit LAG-3’s proximity to TCR and maximize LAG-3-dependent T cell suppression, we develop an Fc-attenuated LAG-3/TCR inhibitory bispecific antibody to bypass the requirement of cognate peptide-MHC class II. This approach allows for potent suppression of both CD4<sup>+</sup> and CD8<sup>+</sup> T cells and effectively alleviates autoimmune symptoms in mouse models. Our findings reveal an intricate and conditional checkpoint modulatory mechanism and highlight targeting of LAG-3/TCR <em>cis</em>-proximity for T cell-driven autoimmune diseases lacking effective and well-tolerated immunotherapies.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"38 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.06.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutically targeting pathogenic T cells in autoimmune diseases has been challenging. Although LAG-3, an inhibitory checkpoint receptor specifically expressed on activated T cells, is known to bind to major histocompatibility complex class II (MHC class II), we demonstrate that MHC class II interaction alone is insufficient for optimal LAG-3 function. Instead, LAG-3’s spatial proximity to T cell receptor (TCR) but not CD4 co-receptor, facilitated by cognate peptide-MHC class II, is crucial in mediating CD4+ T cell suppression. Mechanistically, LAG-3 forms condensate with TCR signaling component CD3ε through its intracellular FSAL motif, disrupting CD3ε/lymphocyte-specific protein kinase (Lck) association. To exploit LAG-3’s proximity to TCR and maximize LAG-3-dependent T cell suppression, we develop an Fc-attenuated LAG-3/TCR inhibitory bispecific antibody to bypass the requirement of cognate peptide-MHC class II. This approach allows for potent suppression of both CD4+ and CD8+ T cells and effectively alleviates autoimmune symptoms in mouse models. Our findings reveal an intricate and conditional checkpoint modulatory mechanism and highlight targeting of LAG-3/TCR cis-proximity for T cell-driven autoimmune diseases lacking effective and well-tolerated immunotherapies.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.