Enhanced visible light photocatalytic degradation of oxytetracycline hydrochloride using heterojunction BiOBr/TiO2 composites

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Caixia Deng , Shuang Li , JiaYu Wang , Yingying Li , Jian Chen , Fenglin Tang , Xiupei Yang
{"title":"Enhanced visible light photocatalytic degradation of oxytetracycline hydrochloride using heterojunction BiOBr/TiO2 composites","authors":"Caixia Deng ,&nbsp;Shuang Li ,&nbsp;JiaYu Wang ,&nbsp;Yingying Li ,&nbsp;Jian Chen ,&nbsp;Fenglin Tang ,&nbsp;Xiupei Yang","doi":"10.1016/j.apsusc.2025.163945","DOIUrl":null,"url":null,"abstract":"<div><div>Type II heterojunction photocatalysts were fabricated by compositing BiOBr with TiO<sub>2</sub>, with samples labeled BiOBr/TiO<sub>2</sub>-1 to BiOBr/TiO<sub>2</sub>-5 (the number denotes the mass of TiO<sub>2</sub> in mg used during synthesis). Among these, BiOBr/TiO<sub>2</sub>-2 (containing 100 mg TiO<sub>2</sub>) exhibited optimal visible-light photocatalytic performance for oxytetracycline hydrochloride (OTC) degradation, achieving 94.38 % removal within 60 min. High-resolution transmission electron microscopy (HRTEM) confirmed successful composite formation through the observation of dual lattice spacings (0.28 nm for BiOBr (1<!--> <!-->1<!--> <!-->0) and 0.35 nm for TiO<sub>2</sub>). This composite displayed a superior degradation rate constant of 0.04757 min<sup>−1</sup>, exceeding those of pristine BiOBr and TiO<sub>2</sub> by factors of 2 and 14, respectively. The enhanced activity was attributed to effective charge separation enabled by the Type II heterojunction structure. Radical trapping experiments combined with electron paramagnetic resonance (EPR) analysis identified photogenerated holes (h<sup>+</sup>) and superoxide radicals (•O<sub>2</sub><sup>−</sup>) as the dominant reactive species. HPLC–MS analysis revealed degradation intermediates, and toxicity assessment predicted progressive detoxification during the process. This study demonstrated that BiOBr/TiO<sub>2</sub>-2 is a stable and efficient photocatalyst with significant potential for antibiotic wastewater treatment.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"710 ","pages":"Article 163945"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225016605","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Type II heterojunction photocatalysts were fabricated by compositing BiOBr with TiO2, with samples labeled BiOBr/TiO2-1 to BiOBr/TiO2-5 (the number denotes the mass of TiO2 in mg used during synthesis). Among these, BiOBr/TiO2-2 (containing 100 mg TiO2) exhibited optimal visible-light photocatalytic performance for oxytetracycline hydrochloride (OTC) degradation, achieving 94.38 % removal within 60 min. High-resolution transmission electron microscopy (HRTEM) confirmed successful composite formation through the observation of dual lattice spacings (0.28 nm for BiOBr (1 1 0) and 0.35 nm for TiO2). This composite displayed a superior degradation rate constant of 0.04757 min−1, exceeding those of pristine BiOBr and TiO2 by factors of 2 and 14, respectively. The enhanced activity was attributed to effective charge separation enabled by the Type II heterojunction structure. Radical trapping experiments combined with electron paramagnetic resonance (EPR) analysis identified photogenerated holes (h+) and superoxide radicals (•O2) as the dominant reactive species. HPLC–MS analysis revealed degradation intermediates, and toxicity assessment predicted progressive detoxification during the process. This study demonstrated that BiOBr/TiO2-2 is a stable and efficient photocatalyst with significant potential for antibiotic wastewater treatment.

Abstract Image

Abstract Image

异质结BiOBr/TiO2复合材料增强可见光催化降解盐酸土霉素
将BiOBr与TiO2复合制备II型异质结光催化剂,样品标记为BiOBr/TiO2-1至BiOBr/TiO2-5(数字表示合成过程中使用的TiO2质量,单位为mg)。其中,BiOBr/TiO2-2(含100 mg TiO2)对盐酸土霉素(OTC)的可见光催化降解性能最佳,在60 min内达到94.38% %的去除率。高分辨率透射电镜(HRTEM)通过观察双晶格间距(BiOBr(110)为0.28 nm, TiO2为0.35 nm)证实了复合材料的成功形成。该复合材料的降解速率常数为0.04757 min−1,分别是原始BiOBr和TiO2的2倍和14倍。活性的增强归因于II型异质结结构的有效电荷分离。自由基捕获实验结合电子顺磁共振(EPR)分析发现光生空穴(h+)和超氧自由基(•O2−)是主要的活性物质。HPLC-MS分析揭示了降解中间体,毒性评估预测了过程中的逐步解毒。本研究表明,BiOBr/TiO2-2是一种稳定高效的光催化剂,在抗生素废水处理中具有重要的潜力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信