Ex-situ incorporation of Al in Ge by sputter deposition and pulsed laser melting: a new approach to fabricate hyper-doped Ge:Al alloys

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Enrico Di Russo , Ettore Coccato , Daris Fontana , Giulia Maria Spataro , Chiara Carraro , Luca Bacci , Nicola Gilli , Giorgio Divitini , Gianluigi Maggioni , Vittorio Morandi , Davide De Salvador , Enrico Napolitani
{"title":"Ex-situ incorporation of Al in Ge by sputter deposition and pulsed laser melting: a new approach to fabricate hyper-doped Ge:Al alloys","authors":"Enrico Di Russo ,&nbsp;Ettore Coccato ,&nbsp;Daris Fontana ,&nbsp;Giulia Maria Spataro ,&nbsp;Chiara Carraro ,&nbsp;Luca Bacci ,&nbsp;Nicola Gilli ,&nbsp;Giorgio Divitini ,&nbsp;Gianluigi Maggioni ,&nbsp;Vittorio Morandi ,&nbsp;Davide De Salvador ,&nbsp;Enrico Napolitani","doi":"10.1016/j.apsusc.2025.163946","DOIUrl":null,"url":null,"abstract":"<div><div>Ge has garnered significant attention for its applications in nanoelectronics, mid-infrared photonics, gamma radiation detection and quantum devices. At present, a critical challenge is achieving dopant concentrations beyond the equilibrium solubility limit, a process known as hyper-doping, while preventing dopant segregation and deactivation. Pulsed laser melting (PLM) offers a nanosecond-scale, non-equilibrium solution that enables highly localized melting and epitaxial regrowth, significantly enhancing both crystallinity and dopant activation compared to conventional annealing and growth methods. This study introduces a novel ex-situ approach to synthesize hyper-doped Ge via sequential deposition of thin Al and Ge layers using magnetron sputtering, followed by PLM to drive Al diffusion and activation within the Ge matrix. This method suggests that a record hole concentration of 3 × 10<sup>21</sup> cm<sup>−3</sup> with 100 % electrical activation could be achieved. In addition, comprehensive electrical, structural, and chemical characterization provides new insights into the melting and recrystallization dynamics under various processing conditions, offering a deeper understanding of the phenomena leading to hyper-doping.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"710 ","pages":"Article 163946"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225016617","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ge has garnered significant attention for its applications in nanoelectronics, mid-infrared photonics, gamma radiation detection and quantum devices. At present, a critical challenge is achieving dopant concentrations beyond the equilibrium solubility limit, a process known as hyper-doping, while preventing dopant segregation and deactivation. Pulsed laser melting (PLM) offers a nanosecond-scale, non-equilibrium solution that enables highly localized melting and epitaxial regrowth, significantly enhancing both crystallinity and dopant activation compared to conventional annealing and growth methods. This study introduces a novel ex-situ approach to synthesize hyper-doped Ge via sequential deposition of thin Al and Ge layers using magnetron sputtering, followed by PLM to drive Al diffusion and activation within the Ge matrix. This method suggests that a record hole concentration of 3 × 1021 cm−3 with 100 % electrical activation could be achieved. In addition, comprehensive electrical, structural, and chemical characterization provides new insights into the melting and recrystallization dynamics under various processing conditions, offering a deeper understanding of the phenomena leading to hyper-doping.

Abstract Image

Abstract Image

用溅射沉积和脉冲激光熔化法在Ge中非原位掺入Al:制备超掺Ge:Al合金的新方法
锗因其在纳米电子学、中红外光子学、伽马辐射探测和量子器件中的应用而受到广泛关注。目前,一个关键的挑战是使掺杂浓度超过平衡溶解度极限,这一过程被称为超掺杂,同时防止掺杂分离和失活。脉冲激光熔化(PLM)提供了一种纳秒级的非平衡溶液,能够实现高度局部化的熔化和外延再生,与传统的退火和生长方法相比,显著提高了结晶度和掺杂激活。本研究介绍了一种新的非原位方法,通过磁控溅射连续沉积薄Al和Ge层来合成超掺杂Ge,然后通过PLM驱动Al在Ge基体内扩散和活化。该方法表明,在100% %的电活化下,可以实现创纪录的3 × 1021 cm−3的空穴浓度。此外,全面的电学、结构和化学表征为不同工艺条件下的熔融和再结晶动力学提供了新的见解,从而对导致超掺杂的现象有了更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信