Low-Loading Pt nanoparticles supported by Fe-N-C rich in FeNX sites with strong electronic interaction for high oxygen reduction performance

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yongjin Sun , Xudong Leng , Xuekun Jin , Fengjuan Chen , Luxuan Huang , Jieyu Yang , Huiqin Zhang , Haiming Duan , Biaobing Cao
{"title":"Low-Loading Pt nanoparticles supported by Fe-N-C rich in FeNX sites with strong electronic interaction for high oxygen reduction performance","authors":"Yongjin Sun ,&nbsp;Xudong Leng ,&nbsp;Xuekun Jin ,&nbsp;Fengjuan Chen ,&nbsp;Luxuan Huang ,&nbsp;Jieyu Yang ,&nbsp;Huiqin Zhang ,&nbsp;Haiming Duan ,&nbsp;Biaobing Cao","doi":"10.1016/j.apsusc.2025.163941","DOIUrl":null,"url":null,"abstract":"<div><div>Reducing the Pt loading and enhancing Oxygen Reduction Reaction (ORR) activity is a promising approach to promote the large-scale application of fuel cells. In this study, we successfully constructed an efficient catalyst with low loading of Pt by anchoring platinum nanoparticles (Pt NPs) onto nitrogen-doped carbon support enriched with FeN<sub>X</sub> active sites via a solvothermal method. XPS analysis demonstrated that the introduction of urea increased the nitrogen content of the support, promoted the formation of FeN<sub>X</sub> sites, and revealed strong electron transfer at the interface between Pt and the support. DFT calculations further validated that FeN<sub>X</sub> sites facilitate electron transfer, reduce the d-band center of Pt, and promote the desorption process of *OH intermediates. Furthermore, the differential charge density visually demonstrated the electron redistribution at the Pt/FeN<sub>X</sub> interface. This strong electronic interaction endowed the catalyst at a low Pt loading (10 wt%) with a half-wave potential (E<sub>1/2</sub>) of 0.887 V, exceeding commercial Pt/C (0.849 V) by 38 mV. Meanwhile, 94 % of initial activity can be maintained after a chronoamperometric test of 10 h, outperforming commercial Pt/C (89 %). This work reveals the Pt/FeN<sub>X</sub> interaction and provides a novel strategy for designing high-performance low-Pt catalysts.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"710 ","pages":"Article 163941"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225016563","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing the Pt loading and enhancing Oxygen Reduction Reaction (ORR) activity is a promising approach to promote the large-scale application of fuel cells. In this study, we successfully constructed an efficient catalyst with low loading of Pt by anchoring platinum nanoparticles (Pt NPs) onto nitrogen-doped carbon support enriched with FeNX active sites via a solvothermal method. XPS analysis demonstrated that the introduction of urea increased the nitrogen content of the support, promoted the formation of FeNX sites, and revealed strong electron transfer at the interface between Pt and the support. DFT calculations further validated that FeNX sites facilitate electron transfer, reduce the d-band center of Pt, and promote the desorption process of *OH intermediates. Furthermore, the differential charge density visually demonstrated the electron redistribution at the Pt/FeNX interface. This strong electronic interaction endowed the catalyst at a low Pt loading (10 wt%) with a half-wave potential (E1/2) of 0.887 V, exceeding commercial Pt/C (0.849 V) by 38 mV. Meanwhile, 94 % of initial activity can be maintained after a chronoamperometric test of 10 h, outperforming commercial Pt/C (89 %). This work reveals the Pt/FeNX interaction and provides a novel strategy for designing high-performance low-Pt catalysts.

Abstract Image

Abstract Image

Fe-N-C负载的低负荷Pt纳米粒子具有强电子相互作用,具有高氧还原性能
降低Pt负载,提高氧还原反应(ORR)活性是促进燃料电池大规模应用的一条很有前途的途径。在这项研究中,我们通过溶剂热法将铂纳米颗粒(Pt NPs)锚定在富含FeNX活性位点的氮掺杂碳载体上,成功构建了一种低Pt负载的高效催化剂。XPS分析表明,尿素的引入增加了载体的氮含量,促进了FeNX位点的形成,并在Pt与载体的界面处显示出强烈的电子转移。DFT计算进一步验证了FeNX位点有利于电子转移,降低了Pt的d带中心,促进了*OH中间体的脱附过程。此外,差分电荷密度直观地显示了Pt/FeNX界面上的电子再分布。这种强电子相互作用使催化剂在低Pt负载(10 wt%)下具有0.887 V的半波电位(E1/2),比商业Pt/C(0.849 V)高出38 mV。同时,在10 h的时间电流测试后,94 %的初始活性可以保持,优于商业Pt/C(89 %)。这项工作揭示了Pt/FeNX的相互作用,并为设计高性能低Pt催化剂提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信