Deconstructing the intercellular interactome in vascular dementia with focal ischemia for therapeutic applications

IF 42.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cell Pub Date : 2025-06-30 DOI:10.1016/j.cell.2025.06.002
Min Tian, Riki Kawaguchi, Yang Shen, Michal Machnicki, Nikole G. Villegas, Delaney R. Cooper, Natalia Montgomery, Ying Cai, Jacqueline Haring, Ruirui Lan, Angelina H. Yuan, Christopher K. Williams, Shino Magaki, Harry V. Vinters, Ye Zhang, Lindsay M. De Biase, Alcino J. Silva, S. Thomas Carmichael
{"title":"Deconstructing the intercellular interactome in vascular dementia with focal ischemia for therapeutic applications","authors":"Min Tian, Riki Kawaguchi, Yang Shen, Michal Machnicki, Nikole G. Villegas, Delaney R. Cooper, Natalia Montgomery, Ying Cai, Jacqueline Haring, Ruirui Lan, Angelina H. Yuan, Christopher K. Williams, Shino Magaki, Harry V. Vinters, Ye Zhang, Lindsay M. De Biase, Alcino J. Silva, S. Thomas Carmichael","doi":"10.1016/j.cell.2025.06.002","DOIUrl":null,"url":null,"abstract":"Vascular dementia (VaD), the second-leading cause of dementia, is primarily a white matter ischemic disease with no direct therapies. Cell-cell interactions within lesion sites dictate disease progression or repair. To elucidate key intercellular pathways, we employ a VaD mouse model with focal ischemia replicating many elements of the complex pathophysiology of human VaD combined with transcriptomic and functional analyses. By integrating cell-type-specific mouse VaD transcriptomes and human VaD single-nucleus RNA sequencing (snRNA-seq) data plus a custom ligand-receptor database (4,053 human and 2,032 mouse pairs), conserved dysregulated intercellular pathways in both species are identified. We demonstrate that two intercellular signaling systems, Serpine2-Lrp1 and CD39-A3AR, are disrupted in VaD. Reduced Serpine2 expression enhances oligodendrocyte progenitor cell (OPC) differentiation, promoting repair, while an A3AR-specific agonist—currently in clinical trials for psoriasis—restores tissue integrity and behavioral function in the VaD model. This study reveals intercellular signaling targets and provides a foundation for developing innovative therapies for VaD.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"14 1","pages":""},"PeriodicalIF":42.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.06.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular dementia (VaD), the second-leading cause of dementia, is primarily a white matter ischemic disease with no direct therapies. Cell-cell interactions within lesion sites dictate disease progression or repair. To elucidate key intercellular pathways, we employ a VaD mouse model with focal ischemia replicating many elements of the complex pathophysiology of human VaD combined with transcriptomic and functional analyses. By integrating cell-type-specific mouse VaD transcriptomes and human VaD single-nucleus RNA sequencing (snRNA-seq) data plus a custom ligand-receptor database (4,053 human and 2,032 mouse pairs), conserved dysregulated intercellular pathways in both species are identified. We demonstrate that two intercellular signaling systems, Serpine2-Lrp1 and CD39-A3AR, are disrupted in VaD. Reduced Serpine2 expression enhances oligodendrocyte progenitor cell (OPC) differentiation, promoting repair, while an A3AR-specific agonist—currently in clinical trials for psoriasis—restores tissue integrity and behavioral function in the VaD model. This study reveals intercellular signaling targets and provides a foundation for developing innovative therapies for VaD.

Abstract Image

解构局灶性缺血血管性痴呆的细胞间相互作用及其治疗应用
血管性痴呆(VaD)是痴呆症的第二大原因,主要是一种白质缺血性疾病,没有直接治疗方法。病变部位的细胞间相互作用决定了疾病的进展或修复。为了阐明关键的细胞间通路,我们采用局灶性缺血VaD小鼠模型,复制了人类VaD复杂病理生理的许多要素,并结合转录组学和功能分析。通过整合细胞类型特异性小鼠VaD转录组和人类VaD单核RNA测序(snRNA-seq)数据以及定制的配体受体数据库(4,053对人类和2,032对小鼠),鉴定出两种物种中保守的失调细胞间通路。我们证明了两个细胞间信号系统Serpine2-Lrp1和CD39-A3AR在VaD中被破坏。Serpine2表达减少可增强少突胶质细胞祖细胞(OPC)分化,促进修复,而a3ar特异性激动剂(目前用于银屑病的临床试验)可恢复VaD模型中的组织完整性和行为功能。本研究揭示了细胞间信号靶点,为VaD的创新治疗提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信