More TOR: The expanding role of mTOR in regulating immune responses

IF 25.5 1区 医学 Q1 IMMUNOLOGY
Chirag H. Patel, Jonathan D. Powell
{"title":"More TOR: The expanding role of mTOR in regulating immune responses","authors":"Chirag H. Patel, Jonathan D. Powell","doi":"10.1016/j.immuni.2025.06.010","DOIUrl":null,"url":null,"abstract":"The mammalian/mechanistic target of rapamycin (mTOR) is an evolutionarily conserved multi-node signaling pathway that integrates critical environmental cues to control cellular growth. Decades worth of studies have intricately dissected the mTOR pathway to identify regulatory signals that are essential for regulating immune cell activation, differentiation, and function. As the mTOR field continues to evolve, so too does our understanding of these new findings in immune cells. Our group and others have previously reviewed the role of mTOR in regulating specific immune responses. Here, we provide an updated review of our current understanding of mTOR’s comprehensive role in immune cell biology. In addition, we offer emerging ideas and areas of investigation where mTOR might be further explored and impactfully targeted to improve overall human health given mTOR’s prominent role in aging and cancer.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"39 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2025.06.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mammalian/mechanistic target of rapamycin (mTOR) is an evolutionarily conserved multi-node signaling pathway that integrates critical environmental cues to control cellular growth. Decades worth of studies have intricately dissected the mTOR pathway to identify regulatory signals that are essential for regulating immune cell activation, differentiation, and function. As the mTOR field continues to evolve, so too does our understanding of these new findings in immune cells. Our group and others have previously reviewed the role of mTOR in regulating specific immune responses. Here, we provide an updated review of our current understanding of mTOR’s comprehensive role in immune cell biology. In addition, we offer emerging ideas and areas of investigation where mTOR might be further explored and impactfully targeted to improve overall human health given mTOR’s prominent role in aging and cancer.
更多的TOR: mTOR在调节免疫反应中的作用不断扩大
雷帕霉素的哺乳动物/机制靶点(mTOR)是一个进化保守的多节点信号通路,整合关键的环境信号来控制细胞生长。几十年的研究已经对mTOR通路进行了复杂的解剖,以确定对调节免疫细胞激活、分化和功能至关重要的调节信号。随着mTOR领域的不断发展,我们对免疫细胞中这些新发现的理解也在不断发展。我们的团队和其他研究人员之前已经研究过mTOR在调节特异性免疫反应中的作用。在这里,我们对mTOR在免疫细胞生物学中的综合作用进行了最新的综述。此外,鉴于mTOR在衰老和癌症中的突出作用,我们提供了新兴的想法和研究领域,可以进一步探索mTOR并有效地针对改善整体人类健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Immunity
Immunity 医学-免疫学
CiteScore
49.40
自引率
2.20%
发文量
205
审稿时长
6 months
期刊介绍: Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信