On the unconditional long-time L2 stability of the SAV-BDF2 time-stepping schemes for the forced Navier–Stokes equations with nonsmooth initial data

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Quen-Yi Lin, Ming-Cheng Shiue
{"title":"On the unconditional long-time L2 stability of the SAV-BDF2 time-stepping schemes for the forced Navier–Stokes equations with nonsmooth initial data","authors":"Quen-Yi Lin,&nbsp;Ming-Cheng Shiue","doi":"10.1016/j.aml.2025.109665","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the long-time <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> stability of the SAV-BDF2 time-stepping scheme for the forced Navier–Stokes equations under a regularization of the initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>H</mi></mrow></math></span> using a method that lifts the solution to the space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> while preserving control over the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm is investigated. In this paper, the unconditional long-time <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> stability of the scheme is established by utilizing a refined estimate of the <span><math><mi>G</mi></math></span>-norm introduced in Shiue (2025), together with recent results from Han and Wang (2024). Moreover, the uniform-in-time bound on the energy norm of the solution is derived independent on the time step size, which allows for larger time steps to speed up simulations, especially for long-term problem. This also improves the result in Han and Wang (2024) where a uniform-in-time bound on the energy norm was obtained under a condition involving the time step size and assuming the initial data is in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> directly.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109665"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002150","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the long-time L2 stability of the SAV-BDF2 time-stepping scheme for the forced Navier–Stokes equations under a regularization of the initial data u0H using a method that lifts the solution to the space H1 while preserving control over the L2 norm is investigated. In this paper, the unconditional long-time L2 stability of the scheme is established by utilizing a refined estimate of the G-norm introduced in Shiue (2025), together with recent results from Han and Wang (2024). Moreover, the uniform-in-time bound on the energy norm of the solution is derived independent on the time step size, which allows for larger time steps to speed up simulations, especially for long-term problem. This also improves the result in Han and Wang (2024) where a uniform-in-time bound on the energy norm was obtained under a condition involving the time step size and assuming the initial data is in H1 directly.
具有非光滑初始数据的强迫Navier-Stokes方程的SAV-BDF2时间步进格式的无条件长[公式略]稳定性
本文研究了在初始数据u0∈H的正则化条件下,强迫Navier-Stokes方程的SAV-BDF2时间步进格式在保留对L2范数控制的同时将解提升到空间H1的长时间L2稳定性。在本文中,利用Shiue(2025)中引入的g-范数的改进估计以及Han和Wang(2024)的最新结果,建立了该方案的无条件长期L2稳定性。此外,解的能量范数的均匀时间界与时间步长无关,这允许更大的时间步长来加速模拟,特别是对于长期问题。这也改进了Han和Wang(2024)的结果,他们在涉及时间步长的条件下,假设初始数据直接在H1中,得到了能量范数的时间均匀界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信