Justyna Szymczak, Agnieszka Strzałka, Dominik Bania, Dagmara Jakimowicz, Marcin Jan Szafran
{"title":"Significance of the CTP-binding motif for the interactions of S. coelicolor ParB with DNA, chromosome segregation, and sporogenic hyphal growth","authors":"Justyna Szymczak, Agnieszka Strzałka, Dominik Bania, Dagmara Jakimowicz, Marcin Jan Szafran","doi":"10.1093/nar/gkaf623","DOIUrl":null,"url":null,"abstract":"The segregation of bacterial chromosomes is widely mediated by partitioning proteins (ParAB). While ParB binds DNA specifically by recognizing short, palindromic sequences known as parS sites, ParA utilizes its ATPase activity to generate the force to translocate ParB–DNA nucleoprotein complexes (segrosomes). The assembly of the segrosome requires the association of ParB with parS, followed by nonspecific spread of the protein along the DNA. To spread on DNA, the ParB dimer must entrap the parS site within the complex, a process triggered by CTP binding to the conserved GERR amino acid motif. In Streptomyces, a genus of soil-dwelling, multigenomic bacteria that have a complex life cycle, ParB-dependent chromosome partitioning is initiated during the growth of sporogenic hyphae. However, the molecular mechanisms underlying segrosome formation in Streptomyces and their ability to coordinate with sporogenic development remain incompletely understood. In this study, we advance the understanding of chromosome segregation in bacteria by exploring the effects of CTP binding and hydrolysis on the formation of the partitioning complex in Streptomyces coelicolor. Here, via in vitro approaches, we demonstrate that a conserved GERR motif is essential for CTP binding and hydrolysis by S. coelicolor ParB. Moreover, the motif is crucial for CTP-dependent ParB accumulation on DNA. Using mutant strains, we show the significance of the GERR motif for segrosome complex assembly. Additionally, we provide data showing that the CTP-binding motif contributes to the regulation of the growth of sporogenic cells. Overall, we show that CTP-dependent segrosome assembly impacts the development of S. coelicolor sporogenic cells.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"27 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf623","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The segregation of bacterial chromosomes is widely mediated by partitioning proteins (ParAB). While ParB binds DNA specifically by recognizing short, palindromic sequences known as parS sites, ParA utilizes its ATPase activity to generate the force to translocate ParB–DNA nucleoprotein complexes (segrosomes). The assembly of the segrosome requires the association of ParB with parS, followed by nonspecific spread of the protein along the DNA. To spread on DNA, the ParB dimer must entrap the parS site within the complex, a process triggered by CTP binding to the conserved GERR amino acid motif. In Streptomyces, a genus of soil-dwelling, multigenomic bacteria that have a complex life cycle, ParB-dependent chromosome partitioning is initiated during the growth of sporogenic hyphae. However, the molecular mechanisms underlying segrosome formation in Streptomyces and their ability to coordinate with sporogenic development remain incompletely understood. In this study, we advance the understanding of chromosome segregation in bacteria by exploring the effects of CTP binding and hydrolysis on the formation of the partitioning complex in Streptomyces coelicolor. Here, via in vitro approaches, we demonstrate that a conserved GERR motif is essential for CTP binding and hydrolysis by S. coelicolor ParB. Moreover, the motif is crucial for CTP-dependent ParB accumulation on DNA. Using mutant strains, we show the significance of the GERR motif for segrosome complex assembly. Additionally, we provide data showing that the CTP-binding motif contributes to the regulation of the growth of sporogenic cells. Overall, we show that CTP-dependent segrosome assembly impacts the development of S. coelicolor sporogenic cells.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.