Imputation for spatiotemporal PM2.5 data via Varying-Coefficient Autoregressive Adversarial Network

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lingxiao Xiang, Haitao Zheng
{"title":"Imputation for spatiotemporal PM2.5 data via Varying-Coefficient Autoregressive Adversarial Network","authors":"Lingxiao Xiang,&nbsp;Haitao Zheng","doi":"10.1016/j.envsoft.2025.106564","DOIUrl":null,"url":null,"abstract":"<div><div>Fine particulate matter (PM2.5) poses risks to environmental health, and missing data due to equipment failures and technical issues hinders pollution analysis. To address this issue, this study proposes Varying-Coefficient Autoregressive Adversarial Network (VCAAN) framework to impute these missing values effectively. First, a Varying-Coefficient Autoregressive (VCA), based on vector autoregression and B-spline approximation of time-varying coefficients, is proposed to capture dynamic spatiotemporal dependencies while reducing model complexity. Next, a Convolutional Discriminative Network (CDN) is designed for spatiotemporal imputation. This network leverages convolutional operations to learn spatiotemporal patterns and assess the quality of the imputed values. In addition, a dynamic adversarial loss weighting mechanism is introduced, enabling VCA and CDN to engage in dynamic adversarial interaction and ultimately converge to a balanced solution. Finally, extensive experiments on Beijing PM2.5 data confirm the proposed method’s superiority, demonstrating its strong adaptability to various missing scenarios and effectiveness even under a high missing rate.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"193 ","pages":"Article 106564"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225002488","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Fine particulate matter (PM2.5) poses risks to environmental health, and missing data due to equipment failures and technical issues hinders pollution analysis. To address this issue, this study proposes Varying-Coefficient Autoregressive Adversarial Network (VCAAN) framework to impute these missing values effectively. First, a Varying-Coefficient Autoregressive (VCA), based on vector autoregression and B-spline approximation of time-varying coefficients, is proposed to capture dynamic spatiotemporal dependencies while reducing model complexity. Next, a Convolutional Discriminative Network (CDN) is designed for spatiotemporal imputation. This network leverages convolutional operations to learn spatiotemporal patterns and assess the quality of the imputed values. In addition, a dynamic adversarial loss weighting mechanism is introduced, enabling VCA and CDN to engage in dynamic adversarial interaction and ultimately converge to a balanced solution. Finally, extensive experiments on Beijing PM2.5 data confirm the proposed method’s superiority, demonstrating its strong adaptability to various missing scenarios and effectiveness even under a high missing rate.
基于变系数自回归对抗网络的PM2.5时空数据反演
细颗粒物(PM2.5)对环境健康构成威胁,由于设备故障和技术问题导致的数据缺失阻碍了污染分析。为了解决这个问题,本研究提出了变系数自回归对抗网络(VCAAN)框架来有效地估算这些缺失值。首先,提出了一种基于向量自回归和时变系数b样条近似的变系数自回归(VCA)方法,在降低模型复杂度的同时捕获动态时空依赖性;其次,设计了一种卷积判别网络(CDN)用于时空插值。该网络利用卷积运算来学习时空模式并评估输入值的质量。此外,引入了动态对抗损失加权机制,使VCA和CDN能够进行动态对抗交互,最终收敛到平衡解。最后,通过对北京PM2.5数据的大量实验,证实了该方法的优越性,证明了该方法对各种缺失情景的适应性强,即使在高缺失率的情况下也具有有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信