{"title":"Transfer learning for cross-building forecasting of building energy and indoor air temperature in model predictive control applications","authors":"Hongwen Dou, Kun Zhang","doi":"10.1016/j.jobe.2025.113341","DOIUrl":null,"url":null,"abstract":"When applying Model Predictive Control (MPC) for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings, accurate forecasting of short-term energy demand and indoor air condition profiles is essential. However, new or retrofitted buildings lack sufficient operation data to develop precise data-driven models. This study investigates transfer learning techniques to enhance the forecasting performance of black-box models under limited data conditions. Specifically, we leverage synthetic data from an open-source EnergyPlus building model to pre-train three neural network models, which are then transferred to a real building and fine-tuned with limited measurements. The results indicate that incorporating synthetic data into the pre-training phase significantly enhances the forecasting accuracy for building and HVAC energy, as well as indoor air temperature profiles, over a 12-hour horizon with 15-minute intervals. The study underscores the potential of combining transfer learning with synthetic data to address data limitations, extending the applicability of learning-based MPC in real-world buildings.","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"46 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jobe.2025.113341","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
When applying Model Predictive Control (MPC) for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings, accurate forecasting of short-term energy demand and indoor air condition profiles is essential. However, new or retrofitted buildings lack sufficient operation data to develop precise data-driven models. This study investigates transfer learning techniques to enhance the forecasting performance of black-box models under limited data conditions. Specifically, we leverage synthetic data from an open-source EnergyPlus building model to pre-train three neural network models, which are then transferred to a real building and fine-tuned with limited measurements. The results indicate that incorporating synthetic data into the pre-training phase significantly enhances the forecasting accuracy for building and HVAC energy, as well as indoor air temperature profiles, over a 12-hour horizon with 15-minute intervals. The study underscores the potential of combining transfer learning with synthetic data to address data limitations, extending the applicability of learning-based MPC in real-world buildings.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.