{"title":"A genomic perspective on fungal diversity and evolution","authors":"Stephen J. Mondo, Igor V. Grigoriev","doi":"10.1038/s41579-025-01195-6","DOIUrl":null,"url":null,"abstract":"<p>Originating from aquatic unicellular ancestors, over the course of ~1 billion years, the fungi have evolved to occupy nearly all aerobic environments on the planet, diversified into millions of different ‘species’ and have developed complex multicellular structures. Their relatively small, simple genomes have facilitated massive-scale sequencing and allowed us to explore genome evolution across an ancient eukaryotic kingdom. With thousands of genomes from diverse lineages now available, this Review will discuss insights into fungal biology and evolution gleaned with genomics and other multi-omics approaches. Using published genomes available through GenBank and the Joint Genome Institute’s MycoCosm platform, we generated kingdom-wide phylogenies and used them to highlight how fungal genomes have changed over time. With this phylogeny as a guide, we also discuss major evolutionary transitions that occurred across the fungal kingdom. Although progress has been made, these efforts are hampered by biases in genome representation and limited characterization of gene functions. Here, we discuss these challenges and possible future directions to address them, including initiatives to characterize conserved genes of unknown function and scale up sequencing towards 10,000 annotated fungal genomes.</p>","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"27 1","pages":""},"PeriodicalIF":69.2000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41579-025-01195-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Originating from aquatic unicellular ancestors, over the course of ~1 billion years, the fungi have evolved to occupy nearly all aerobic environments on the planet, diversified into millions of different ‘species’ and have developed complex multicellular structures. Their relatively small, simple genomes have facilitated massive-scale sequencing and allowed us to explore genome evolution across an ancient eukaryotic kingdom. With thousands of genomes from diverse lineages now available, this Review will discuss insights into fungal biology and evolution gleaned with genomics and other multi-omics approaches. Using published genomes available through GenBank and the Joint Genome Institute’s MycoCosm platform, we generated kingdom-wide phylogenies and used them to highlight how fungal genomes have changed over time. With this phylogeny as a guide, we also discuss major evolutionary transitions that occurred across the fungal kingdom. Although progress has been made, these efforts are hampered by biases in genome representation and limited characterization of gene functions. Here, we discuss these challenges and possible future directions to address them, including initiatives to characterize conserved genes of unknown function and scale up sequencing towards 10,000 annotated fungal genomes.
期刊介绍:
At Nature Reviews Microbiology, our goal is to become the leading source of reviews and commentaries for the scientific community we cater to. We are dedicated to publishing articles that are not only authoritative but also easily accessible, supplementing them with clear and concise figures, tables, and other visual aids. Our objective is to offer an unparalleled service to authors, referees, and readers, and we continuously strive to maximize the usefulness and impact of each article we publish. With a focus on Reviews, Perspectives, and Comments spanning the entire field of microbiology, our wide scope ensures that the work we feature reaches the widest possible audience.