Advanced Martian construction: High-strength ISRU bricks, robust sulfur bonding, modular assembly, and FEA-verified pyramid habitats

IF 6.7 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Wei Sun, Jiabao Zhao, Handong Yan, ShaoFei Jiang, Tiejiong Lou
{"title":"Advanced Martian construction: High-strength ISRU bricks, robust sulfur bonding, modular assembly, and FEA-verified pyramid habitats","authors":"Wei Sun, Jiabao Zhao, Handong Yan, ShaoFei Jiang, Tiejiong Lou","doi":"10.1016/j.jobe.2025.113356","DOIUrl":null,"url":null,"abstract":"Sustainable habitat construction on Mars faces significant challenges, including low atmospheric pressure hindering hydration, reduced gravity complicating compaction, and large habitat pressure differentials. This study presents an integrated In-Situ Resource Utilization (ISRU) approach combining high-strength regolith bricks, hydration-free sulfur bonding, and a modular pyramid habitat design validated by Finite Element Analysis (FEA). Optimized mechanical compaction (40 MPa) of nano-SiO<ce:inf loc=\"post\">2</ce:inf>-enhanced Martian regolith simulant effectively bypasses hydration constraints, achieving compressive strengths exceeding 20 MPa even at ambient temperatures. A systematic parameter study (pressure, particle size, water content, temperature) yielded predictive design equations and demonstrated potential strength enhancement up to 44.5 MPa with thermal treatment (1000°C). Furthermore, a robust, hydration-free sulfur-based mortar was developed for modular assembly; optimized flat-cut interfaces yielded bond strengths exceeding 2.0 MPa, crucially shifting the failure mode from the bond interface to the brick material itself (ensuring a reliable minimum tensile capacity &gt;1.2 MPa). Leveraging these advancements, a pyramid-shaped habitat module, advantageous for Martian environmental loads (including a 101.3 kPa internal pressure differential and 3.71 m/s<ce:sup loc=\"post\">2</ce:sup> gravity), was designed. FEA, incorporating experimentally derived material properties (e.g., 22 MPa compressive strength, 1.2 MPa tensile/bond capacity), confirmed the structural integrity, with maximum predicted tensile stress (1.15 MPa) remaining below the bond limit. This research provides a comprehensive, experimentally validated framework—from material development and bonding to structural application—for constructing resource-efficient, durable habitats on Mars, significantly advancing solutions for sustainable extraterrestrial infrastructure.","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"56 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jobe.2025.113356","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainable habitat construction on Mars faces significant challenges, including low atmospheric pressure hindering hydration, reduced gravity complicating compaction, and large habitat pressure differentials. This study presents an integrated In-Situ Resource Utilization (ISRU) approach combining high-strength regolith bricks, hydration-free sulfur bonding, and a modular pyramid habitat design validated by Finite Element Analysis (FEA). Optimized mechanical compaction (40 MPa) of nano-SiO2-enhanced Martian regolith simulant effectively bypasses hydration constraints, achieving compressive strengths exceeding 20 MPa even at ambient temperatures. A systematic parameter study (pressure, particle size, water content, temperature) yielded predictive design equations and demonstrated potential strength enhancement up to 44.5 MPa with thermal treatment (1000°C). Furthermore, a robust, hydration-free sulfur-based mortar was developed for modular assembly; optimized flat-cut interfaces yielded bond strengths exceeding 2.0 MPa, crucially shifting the failure mode from the bond interface to the brick material itself (ensuring a reliable minimum tensile capacity >1.2 MPa). Leveraging these advancements, a pyramid-shaped habitat module, advantageous for Martian environmental loads (including a 101.3 kPa internal pressure differential and 3.71 m/s2 gravity), was designed. FEA, incorporating experimentally derived material properties (e.g., 22 MPa compressive strength, 1.2 MPa tensile/bond capacity), confirmed the structural integrity, with maximum predicted tensile stress (1.15 MPa) remaining below the bond limit. This research provides a comprehensive, experimentally validated framework—from material development and bonding to structural application—for constructing resource-efficient, durable habitats on Mars, significantly advancing solutions for sustainable extraterrestrial infrastructure.
先进的火星建筑:高强度的ISRU砖,坚固的硫键,模块化组装,和经有限元验证的金字塔栖息地
在火星上可持续的栖息地建设面临着重大挑战,包括低大气压阻碍水合作用,重力降低使压实复杂化,以及栖息地压力差大。本研究提出了一种集成的原位资源利用(ISRU)方法,该方法结合了高强度风化砖、无水化硫键和经过有限元分析(FEA)验证的模块化金字塔栖息地设计。优化的机械压实(40 MPa)纳米二氧化硅增强火星风化模拟物有效绕过水化约束,即使在环境温度下也能达到超过20 MPa的抗压强度。系统的参数研究(压力、粒度、含水量、温度)得出了预测设计方程,并证明了热处理(1000°C)的潜在强度提高可达44.5 MPa。此外,还开发了一种坚固的无水化硫基砂浆,用于模块化组装;优化后的平切界面产生了超过2.0 MPa的结合强度,关键是将破坏模式从结合界面转移到砖材料本身(确保可靠的最小抗拉能力为1.2 MPa)。利用这些进步,设计了一个金字塔形的栖息地模块,有利于火星环境负载(包括101.3 kPa的内部压差和3.71 m/s2的重力)。结合实验得出的材料性能(例如,22 MPa抗压强度,1.2 MPa拉伸/键合能力),FEA证实了结构的完整性,最大预测拉伸应力(1.15 MPa)保持在键合极限以下。这项研究提供了一个全面的、经过实验验证的框架——从材料开发和粘合到结构应用——用于在火星上建造资源高效、耐用的栖息地,显著推进了可持续地外基础设施的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信