Optimization of sustainable high-performance alkali-activated composites using industrial and agricultural wastes: A comprehensive performance evaluation
IF 6.7 2区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Ali Öz, F. Melih Dursun, Ahmet Benli, Gökhan Kaplan
{"title":"Optimization of sustainable high-performance alkali-activated composites using industrial and agricultural wastes: A comprehensive performance evaluation","authors":"Ali Öz, F. Melih Dursun, Ahmet Benli, Gökhan Kaplan","doi":"10.1016/j.jobe.2025.113319","DOIUrl":null,"url":null,"abstract":"The increasing environmental burden of Portland cement production has accelerated the search for sustainable alternatives in construction materials. This study investigates the development and optimization of high-performance alkali-activated composites (AACs) using industrial and agricultural waste products as binders and aggregates. Ground granulated blast furnace slag (GBFS) was used as the primary precursor, partially replaced by 15% waste brick powder (BP), natural zeolite (NZ), or rice husk ash (RHA) as supplementary cementitious materials (SCMs), while 100% waste marble powder (WMP) was employed as fine aggregate. The aim was to assess the mechanical, durability, and microstructural properties of these eco-efficient AACs under varying sodium silicate-to-sodium hydroxide (NS/NH) ratios (1.5–3.0) and thermal curing conditions (40 °C and 80 °C), and to identify the optimal formulation for high-performance applications.","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"24 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jobe.2025.113319","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing environmental burden of Portland cement production has accelerated the search for sustainable alternatives in construction materials. This study investigates the development and optimization of high-performance alkali-activated composites (AACs) using industrial and agricultural waste products as binders and aggregates. Ground granulated blast furnace slag (GBFS) was used as the primary precursor, partially replaced by 15% waste brick powder (BP), natural zeolite (NZ), or rice husk ash (RHA) as supplementary cementitious materials (SCMs), while 100% waste marble powder (WMP) was employed as fine aggregate. The aim was to assess the mechanical, durability, and microstructural properties of these eco-efficient AACs under varying sodium silicate-to-sodium hydroxide (NS/NH) ratios (1.5–3.0) and thermal curing conditions (40 °C and 80 °C), and to identify the optimal formulation for high-performance applications.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.