Thais Schroeder Rossi, Athanasios A. Papaderakis, Maximilian Jaugstetter, Zaher Jlailati, Miriam Knoke, Pouya Hosseini, Paolo Cignoni, Fengli Yang, Maximilian Gerwin, Oliver Trost, Marius Spallek, Eduardo Ortega, Beatriz Roldan Cuenya, Debbie C. Crans, Nancy E. Levinger and Kristina Tschulik
{"title":"Bimetallic Ag–Au nanoparticles from nanoconfinement: adjusting properties by electrochemical synthesis†","authors":"Thais Schroeder Rossi, Athanasios A. Papaderakis, Maximilian Jaugstetter, Zaher Jlailati, Miriam Knoke, Pouya Hosseini, Paolo Cignoni, Fengli Yang, Maximilian Gerwin, Oliver Trost, Marius Spallek, Eduardo Ortega, Beatriz Roldan Cuenya, Debbie C. Crans, Nancy E. Levinger and Kristina Tschulik","doi":"10.1039/D5TA01833A","DOIUrl":null,"url":null,"abstract":"<p >Developing synthetic pathways that exhibit well-controlled yet versatile characteristics to prepare nanoparticles (NPs) with properties tailored to the desired application is a topic of continuous interest. Herein, we introduce an innovative approach to form bimetallic alloy and core–shell-like Ag–Au NPs, employing reverse micelles as nanoreactors at the polarized electrolyte/electrode interface. Encapsulation of the metal precursors in the nanocavities of polystyrene-<em>b</em>-poly(2-vinylpyridine) (PS–P2VP) reverse micelles provides a route to control the NP size without the need for additional chemicals. By investigating the relations between the electrochemical driving force of the process and the complex interplay among the precursor species and the electrolyte medium, bimetallic Ag–Au NPs with sizes ranging from below 10 nm to 140 nm were synthesized with adjustable element configuration (core–shell <em>vs.</em> alloy) and composition. Notably, the resultant NPs were either Ag-rich alloys or Au-rich alloys or had a core–shell-like configuration with adjustable core and shell compositions based on the applied electrode potential and electrolyte medium. Finally, the prepared NPs were evaluated for their catalytic activity based on their physical properties against the hydrogen evolution reaction, where the core–shell-like NPs showed the most promising performance.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 29","pages":" 24014-24027"},"PeriodicalIF":9.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta01833a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01833a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing synthetic pathways that exhibit well-controlled yet versatile characteristics to prepare nanoparticles (NPs) with properties tailored to the desired application is a topic of continuous interest. Herein, we introduce an innovative approach to form bimetallic alloy and core–shell-like Ag–Au NPs, employing reverse micelles as nanoreactors at the polarized electrolyte/electrode interface. Encapsulation of the metal precursors in the nanocavities of polystyrene-b-poly(2-vinylpyridine) (PS–P2VP) reverse micelles provides a route to control the NP size without the need for additional chemicals. By investigating the relations between the electrochemical driving force of the process and the complex interplay among the precursor species and the electrolyte medium, bimetallic Ag–Au NPs with sizes ranging from below 10 nm to 140 nm were synthesized with adjustable element configuration (core–shell vs. alloy) and composition. Notably, the resultant NPs were either Ag-rich alloys or Au-rich alloys or had a core–shell-like configuration with adjustable core and shell compositions based on the applied electrode potential and electrolyte medium. Finally, the prepared NPs were evaluated for their catalytic activity based on their physical properties against the hydrogen evolution reaction, where the core–shell-like NPs showed the most promising performance.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.