Efficient tandem electrochemical reduction of nitrate to ammonia through coupling Co2P with Co/Co2P interface

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yanbin Qu, Tianyi Dai, Guopeng Ding, Zixuan Feng, Zhili Wang, Qing Jiang
{"title":"Efficient tandem electrochemical reduction of nitrate to ammonia through coupling Co2P with Co/Co2P interface","authors":"Yanbin Qu, Tianyi Dai, Guopeng Ding, Zixuan Feng, Zhili Wang, Qing Jiang","doi":"10.1016/j.jmst.2025.04.083","DOIUrl":null,"url":null,"abstract":"Electrochemical nitrate reduction reaction (<mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> RR) is a highly attractive route for both ammonia (NH<ce:inf loc=\"post\">3</ce:inf>) synthesis and wastewater treatment. The <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> RR involves the reduction of <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> to <mml:math altimg=\"si2.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math>, the conversion of <mml:math altimg=\"si2.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> to NH<ce:inf loc=\"post\">3</ce:inf>, and the dissociation of H<ce:inf loc=\"post\">2</ce:inf>O to *H. However, these three reactions depend on distinct catalyst properties that are difficult to achieve in a single-site catalyst. Here a tandem catalyst of Co/Co<ce:inf loc=\"post\">2</ce:inf>P heterostructures encapsulated by N-doped graphene shells on carbon nanotube (Co/Co<ce:inf loc=\"post\">2</ce:inf>P@NG/CNT) for <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> RR were developed, achieving an attractive NH<ce:inf loc=\"post\">3</ce:inf> yield rate of 47.8 mg h<ce:sup loc=\"post\">−1</ce:sup> mg<ce:sup loc=\"post\">−1</ce:sup> with a corresponding NH<ce:inf loc=\"post\">3</ce:inf> Faradaic efficiency of 99.2% in 0.05 mol/L NO<ce:inf loc=\"post\">3</ce:inf><ce:sup loc=\"post\">−</ce:sup> solution, exceeding most of the reported catalysts under the same <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> concentration. Experimental and theoretical studies reveal that the Co<ce:inf loc=\"post\">2</ce:inf>P effectively reduces <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> to <mml:math altimg=\"si2.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math>, while Co/Co<ce:inf loc=\"post\">2</ce:inf>P interface is responsible for the subsequent conversion of <mml:math altimg=\"si2.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> to NH<ce:inf loc=\"post\">3</ce:inf>. Meanwhile, the H<ce:inf loc=\"post\">2</ce:inf>O dissociation is promoted by the Co/Co<ce:inf loc=\"post\">2</ce:inf>P interface to generate *H for intermediates hydrogenation. Such a tandem catalysis process accelerates the conversion of <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> into NH<ce:inf loc=\"post\">3</ce:inf>. The Co/Co<ce:inf loc=\"post\">2</ce:inf>P@NG/CNT also shows good stability due to the robust protection from N-doped graphene shell.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"62 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.04.083","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical nitrate reduction reaction (NO3 RR) is a highly attractive route for both ammonia (NH3) synthesis and wastewater treatment. The NO3 RR involves the reduction of NO3 to NO2, the conversion of NO2 to NH3, and the dissociation of H2O to *H. However, these three reactions depend on distinct catalyst properties that are difficult to achieve in a single-site catalyst. Here a tandem catalyst of Co/Co2P heterostructures encapsulated by N-doped graphene shells on carbon nanotube (Co/Co2P@NG/CNT) for NO3 RR were developed, achieving an attractive NH3 yield rate of 47.8 mg h−1 mg−1 with a corresponding NH3 Faradaic efficiency of 99.2% in 0.05 mol/L NO3 solution, exceeding most of the reported catalysts under the same NO3 concentration. Experimental and theoretical studies reveal that the Co2P effectively reduces NO3 to NO2, while Co/Co2P interface is responsible for the subsequent conversion of NO2 to NH3. Meanwhile, the H2O dissociation is promoted by the Co/Co2P interface to generate *H for intermediates hydrogenation. Such a tandem catalysis process accelerates the conversion of NO3 into NH3. The Co/Co2P@NG/CNT also shows good stability due to the robust protection from N-doped graphene shell.
Co2P与Co/Co2P界面耦合的硝酸盐串联电化学还原为氨
电化学硝酸还原反应(NO3 - RR)在氨(NH3)合成和废水处理中都是一条极具吸引力的途径。NO3 - RR包括NO3−还原为NO2−,NO2−转化为NH3, H2O解离为*H。然而,这三种反应依赖于不同的催化剂性质,这在单位点催化剂中很难实现。在碳纳米管(Co/Co2P@NG/CNT)上制备了一种由n掺杂石墨烯壳包裹的Co/Co2P异质结构的NO3 - RR级联催化剂,在0.05 mol/L NO3 -溶液中NH3的产率为47.8 mg h - 1 mg - 1, NH3的法拉第效率为99.2%,超过了目前报道的大多数NO3 -浓度相同的催化剂。实验和理论研究表明,Co2P有效地将NO3−还原为NO2−,而Co/Co2P界面负责随后将NO2−转化为NH3。同时,Co/Co2P界面促进H2O解离,生成*H用于中间体加氢。这种串联催化过程加速了NO3−向NH3的转化。Co/Co2P@NG/CNT还表现出良好的稳定性,因为它对n掺杂石墨烯壳具有强大的保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信