Multi-functional biomedical medium entropy alloy development: Achieving concurrent optimization of mechanical properties, corrosion resistance, and biocompatibility

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoyi Du, Zeyu Ding, Mingliang Wang, Yi Ma, Yiping Lu
{"title":"Multi-functional biomedical medium entropy alloy development: Achieving concurrent optimization of mechanical properties, corrosion resistance, and biocompatibility","authors":"Xiaoyi Du, Zeyu Ding, Mingliang Wang, Yi Ma, Yiping Lu","doi":"10.1016/j.jmst.2025.05.044","DOIUrl":null,"url":null,"abstract":"Current metallic biomaterials face critical limitations in orthopedic applications, paradoxically exhibiting excessive stiffness alongside incompatible strength-ductility ratios and compromised corrosion resistance. These intrinsic property conflicts fundamentally restrict their clinical applicability despite the urgent demand for multi-property-integrated implants. This work presents a novel (TiZrNb<ce:inf loc=\"post\">0.7</ce:inf>)<ce:inf loc=\"post\">98</ce:inf>O<ce:inf loc=\"post\">2</ce:inf> medium-entropy alloy (MEA) with synergistic integration of high yield strength (<ce:italic>σ</ce:italic><ce:inf loc=\"post\">y</ce:inf> = 1096 MPa), substantial ductility (fracture strain <ce:italic>ε</ce:italic><ce:inf loc=\"post\">f</ce:inf> = 25.1%), and biomedically favorable modulus (<ce:italic>E</ce:italic> = 71.4 GPa). The alloy demonstrates a 35.3% lower elastic modulus compared to conventional Ti6Al4V (110 GPa), effectively mitigating stress-shielding risks. Electrochemical tests in simulated body fluid (PBS, 37°C) reveal a 0.1556 μA cm<ce:sup loc=\"post\">−</ce:sup>² corrosion current density, 1.5-fold lower than Ti6Al4V's 0.2326 μA cm<ce:sup loc=\"post\">−</ce:sup>². In vitro cellular assays demonstrated 98.3% viability of MC3T3-E1 cells following 7-day culture, outperforming Ti6Al4V controls (94.1%) by 4.2%. These findings provide valuable insights for designing metal implant materials with excellent properties.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"186 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.05.044","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Current metallic biomaterials face critical limitations in orthopedic applications, paradoxically exhibiting excessive stiffness alongside incompatible strength-ductility ratios and compromised corrosion resistance. These intrinsic property conflicts fundamentally restrict their clinical applicability despite the urgent demand for multi-property-integrated implants. This work presents a novel (TiZrNb0.7)98O2 medium-entropy alloy (MEA) with synergistic integration of high yield strength (σy = 1096 MPa), substantial ductility (fracture strain εf = 25.1%), and biomedically favorable modulus (E = 71.4 GPa). The alloy demonstrates a 35.3% lower elastic modulus compared to conventional Ti6Al4V (110 GPa), effectively mitigating stress-shielding risks. Electrochemical tests in simulated body fluid (PBS, 37°C) reveal a 0.1556 μA cm² corrosion current density, 1.5-fold lower than Ti6Al4V's 0.2326 μA cm². In vitro cellular assays demonstrated 98.3% viability of MC3T3-E1 cells following 7-day culture, outperforming Ti6Al4V controls (94.1%) by 4.2%. These findings provide valuable insights for designing metal implant materials with excellent properties.
多功能生物医学介质熵合金的开发:实现机械性能、耐腐蚀性和生物相容性的同步优化
目前的金属生物材料在骨科应用中面临着严重的限制,矛盾的是,它表现出过度的刚度,同时又表现出不相容的强度-延展性比和不稳定的耐腐蚀性。尽管迫切需要多属性集成植入物,但这些内在属性冲突从根本上限制了其临床适用性。本文提出了一种新型(TiZrNb0.7)98O2中熵合金(MEA),它具有高屈服强度(σy = 1096 MPa)、高延性(断裂应变εf = 25.1%)和生物医学上有利的模量(E = 71.4 GPa)的协同集成。与传统Ti6Al4V (110 GPa)相比,该合金的弹性模量降低了35.3%,有效降低了应力屏蔽风险。在模拟体液(PBS, 37°C)中进行电化学测试,腐蚀电流密度为0.1556 μA cm−²,比Ti6Al4V的0.2326 μA cm−²低1.5倍。体外细胞实验显示,培养7天后,MC3T3-E1细胞的存活率为98.3%,比Ti6Al4V对照组(94.1%)高出4.2%。这些发现为设计具有优良性能的金属种植材料提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信