Accurate prediction of high-temperature ionic melt viscosity through data-driven modeling enhanced with explainable AI

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Seungyeon Lee, Sanghoon Lee, Il Sohn
{"title":"Accurate prediction of high-temperature ionic melt viscosity through data-driven modeling enhanced with explainable AI","authors":"Seungyeon Lee, Sanghoon Lee, Il Sohn","doi":"10.1016/j.jmst.2025.06.012","DOIUrl":null,"url":null,"abstract":"The increasing demand for high-performance steels and environmentally sustainable pyrometallurgical processes has led to significant compositional variations in ionic melts and the development of novel fluxes. Optimizing ionic melt performance requires precise control of thermophysical properties, with viscosity being a key factor influencing heat and mass transport in various industrial applications. However, traditional experimental and analytical methods are often cost-prohibitive and pose challenges in generalizing findings across diverse compositions and temperatures. This study introduces MOVINet (MOlten ions VIscosity Network), a data-driven modeling framework designed to predict high-temperature ionic melt viscosity based on melt composition, temperature, and fundamental properties of 13 components, including 12 oxides and one fluoride. Trained on 1981 experimentally measured data points and evaluated using 480 independent data points, MOVINet achieved a mean absolute error (MAE) of 0.1480, reducing error by 57.7% compared to the best existing model (MAE = 0.3497). It consistently demonstrated high accuracy across six ionic melt types over a broad temperature range (1100–1870°C) and maintained low errors even for melts containing previously unseen components (e.g., MAEs of 0.0567 for CaCl<ce:inf loc=\"post\">2</ce:inf> and 0.1463 for BaO-containing samples). Furthermore, explainable AI analysis confirmed the dominant influence of temperature while highlighting compositional features affecting viscosity.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"10 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.06.012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for high-performance steels and environmentally sustainable pyrometallurgical processes has led to significant compositional variations in ionic melts and the development of novel fluxes. Optimizing ionic melt performance requires precise control of thermophysical properties, with viscosity being a key factor influencing heat and mass transport in various industrial applications. However, traditional experimental and analytical methods are often cost-prohibitive and pose challenges in generalizing findings across diverse compositions and temperatures. This study introduces MOVINet (MOlten ions VIscosity Network), a data-driven modeling framework designed to predict high-temperature ionic melt viscosity based on melt composition, temperature, and fundamental properties of 13 components, including 12 oxides and one fluoride. Trained on 1981 experimentally measured data points and evaluated using 480 independent data points, MOVINet achieved a mean absolute error (MAE) of 0.1480, reducing error by 57.7% compared to the best existing model (MAE = 0.3497). It consistently demonstrated high accuracy across six ionic melt types over a broad temperature range (1100–1870°C) and maintained low errors even for melts containing previously unseen components (e.g., MAEs of 0.0567 for CaCl2 and 0.1463 for BaO-containing samples). Furthermore, explainable AI analysis confirmed the dominant influence of temperature while highlighting compositional features affecting viscosity.
通过可解释的人工智能增强的数据驱动建模,准确预测高温离子熔体粘度
对高性能钢和环境可持续的火法冶金工艺的日益增长的需求导致了离子熔体成分的显著变化和新型助熔剂的发展。优化离子熔体性能需要精确控制热物理性质,而粘度是影响各种工业应用中热量和质量传递的关键因素。然而,传统的实验和分析方法往往成本过高,并且在推广不同成分和温度的研究结果方面存在挑战。该研究引入了MOVINet(熔融离子粘度网络),这是一个数据驱动的建模框架,旨在根据熔体成分、温度和13种成分(包括12种氧化物和1种氟化物)的基本性质来预测高温离子熔体粘度。在1981个实验测量数据点上训练,并使用480个独立数据点进行评估,MOVINet的平均绝对误差(MAE)为0.1480,与现有最佳模型(MAE = 0.3497)相比,误差降低了57.7%。在广泛的温度范围内(1100-1870°C),它在六种离子熔体类型中始终表现出高精度,并且即使对于含有以前未见过的成分的熔体也保持低误差(例如,CaCl2的MAEs为0.0567,含bao样品的MAEs为0.1463)。此外,可解释的AI分析证实了温度的主导影响,同时突出了影响粘度的成分特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信