Exceptional tensile properties induced by interlayer-compatible deformation in a gradient ultra-nanograined Cu

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hangqi Feng, Qingyu Kang, Lingling Zhou, Zhenghong He, Jinliang Du, Muxin Yang, Weijie Li, Ying Li, Fuping Yuan, Xiaolei Wu
{"title":"Exceptional tensile properties induced by interlayer-compatible deformation in a gradient ultra-nanograined Cu","authors":"Hangqi Feng, Qingyu Kang, Lingling Zhou, Zhenghong He, Jinliang Du, Muxin Yang, Weijie Li, Ying Li, Fuping Yuan, Xiaolei Wu","doi":"10.1016/j.jmst.2025.04.084","DOIUrl":null,"url":null,"abstract":"In this study, a gradient ultra-nanograined (GUNG) Cu was prepared by surface rolling and shearing processing at liquid nitrogen temperature. Microstructural analysis reveals a significant presence of ultra-nanograins (∼5–20 nm) within the topmost surface layer (SL), transitioning to coarser grains beneath, culminating in a gradient structure over 600 μm deep. The GUNG Cu exhibits an exceptional strength-ductility synergy, achieving yield strengths of 250–330 MPa and uniform elongations of 17%–30%. The deformation mechanisms of GUNG Cu are elucidated through in-situ electron backscatter diffraction and microscopic digital image correlation, highlighting the interlayer-compatible deformation of GUNG Cu under tensile loading. It is noteworthy that the topmost ultra-nanograined SL (within depths of 0–2 μm) in GUNG Cu maintains high mechanical stability with minimal change in grain size during tensile plastic deformation, whereas the subsurface layer (at a depth of ∼15 µm) displays a deformation-driven grain coarsening behavior, facilitating deformation compatibility across individual layers. The enhanced strength-ductility synergy exhibited in GUNG Cu can be attributed to the interplay between interlayer compatible deformation and hetero-deformation induced (HDI) hardening, in which softer and harder layers interact with each other, thus promoting the strain hardening throughout the GUNG structure. The present findings provide a more profound understanding of deformation compatibility and HDI hardening mechanisms in gradient structures, demonstrating how tailored microstructural heterogeneity can potentially circumvent the traditional strength-ductility trade-off in nanostructured materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"2 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.04.084","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a gradient ultra-nanograined (GUNG) Cu was prepared by surface rolling and shearing processing at liquid nitrogen temperature. Microstructural analysis reveals a significant presence of ultra-nanograins (∼5–20 nm) within the topmost surface layer (SL), transitioning to coarser grains beneath, culminating in a gradient structure over 600 μm deep. The GUNG Cu exhibits an exceptional strength-ductility synergy, achieving yield strengths of 250–330 MPa and uniform elongations of 17%–30%. The deformation mechanisms of GUNG Cu are elucidated through in-situ electron backscatter diffraction and microscopic digital image correlation, highlighting the interlayer-compatible deformation of GUNG Cu under tensile loading. It is noteworthy that the topmost ultra-nanograined SL (within depths of 0–2 μm) in GUNG Cu maintains high mechanical stability with minimal change in grain size during tensile plastic deformation, whereas the subsurface layer (at a depth of ∼15 µm) displays a deformation-driven grain coarsening behavior, facilitating deformation compatibility across individual layers. The enhanced strength-ductility synergy exhibited in GUNG Cu can be attributed to the interplay between interlayer compatible deformation and hetero-deformation induced (HDI) hardening, in which softer and harder layers interact with each other, thus promoting the strain hardening throughout the GUNG structure. The present findings provide a more profound understanding of deformation compatibility and HDI hardening mechanisms in gradient structures, demonstrating how tailored microstructural heterogeneity can potentially circumvent the traditional strength-ductility trade-off in nanostructured materials.
梯度超纳米晶铜层间相容变形诱导的优异拉伸性能
在液氮温度下,通过表面轧制和剪切工艺制备了梯度超纳米晶(GUNG) Cu。显微结构分析表明,在最表层(SL)内存在显著的超纳米颗粒(~ 5-20 nm),向下面的粗颗粒过渡,最终形成超过600 μm深的梯度结构。GUNG Cu表现出优异的强度-塑性协同效应,屈服强度达到250 - 330mpa,均匀伸长率为17%-30%。通过原位电子背散射衍射和显微数字图像相关分析,阐明了GUNG Cu的变形机理,突出了GUNG Cu在拉伸载荷作用下的层间相容变形。值得注意的是,GUNG Cu中最上层的超纳米晶粒SL(深度为0-2 μm)在拉伸塑性变形过程中保持了很高的机械稳定性,晶粒尺寸变化很小,而次表层(深度为~ 15 μm)表现出变形驱动的晶粒粗化行为,促进了各层之间的变形相容性。GUNG - Cu中增强的强度-塑性协同作用可归因于层间相容变形和异质变形诱导(HDI)硬化的相互作用,其中软硬两层相互作用,从而促进了整个GUNG组织的应变硬化。目前的研究结果为梯度结构中的变形相容性和HDI硬化机制提供了更深刻的理解,展示了定制的微观结构非均质性如何潜在地绕过纳米结构材料中传统的强度-延性权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信