Optimizing Bromine Complexation and Kinetics: A Bisimidazole Strategy for High‐Performance Zn‐Br Static Batteries

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yunting Wu, Chen Xu, Chengjun Lei, Wenjiao Ma, Wei Zhang, Xin He, Xiao Liang
{"title":"Optimizing Bromine Complexation and Kinetics: A Bisimidazole Strategy for High‐Performance Zn‐Br Static Batteries","authors":"Yunting Wu, Chen Xu, Chengjun Lei, Wenjiao Ma, Wei Zhang, Xin He, Xiao Liang","doi":"10.1002/anie.202509293","DOIUrl":null,"url":null,"abstract":"Zinc–bromine (Zn–Br) static batteries are promising for large‐scale energy storage, yet the practical application is hindered by the long‐standing trade‐off about bromine complexing agents (BCAs) between bromine complexation strength and redox kinetics. Herein, we report a rationally designed bisimidazolium salt, 1,4‐bis(3‐methylimidazolium‐1‐yl) butane dibromide ([bMImB]Br2), which features a symmetric molecular structure that reconciles this contradiction. [bMImB]Br2 demonstrates strong bromine affinity, stemming from its high atomic charge of N+ and low solubility—properties comparable to those of tetraalkyl‐quaternary ammonium salts. Simultaneously, it retains low steric hindrance typical of monoimidazole compounds, thereby enabling fast electrode kinetics. As a result, Zn–Br batteries incorporating [bMImB]Br2 deliver a high specific energy of 116 Wh·kg−1, alongside an average coulombic efficiency (CE) of 99.22% and energy efficiency (EE) of 89.35% at 10 mAh·cm−2 (0.5 C) for over 150 cycles. Furthermore, the flexible pouch cell maintains a discharge capacity of 110 mAh and 99.7% CE over 100 cycles, even under mechanical deformation. This work offers a generalizable molecular design strategy for developing next‐generation BCAs in halogen‐based energy storage systems.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"69 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202509293","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc–bromine (Zn–Br) static batteries are promising for large‐scale energy storage, yet the practical application is hindered by the long‐standing trade‐off about bromine complexing agents (BCAs) between bromine complexation strength and redox kinetics. Herein, we report a rationally designed bisimidazolium salt, 1,4‐bis(3‐methylimidazolium‐1‐yl) butane dibromide ([bMImB]Br2), which features a symmetric molecular structure that reconciles this contradiction. [bMImB]Br2 demonstrates strong bromine affinity, stemming from its high atomic charge of N+ and low solubility—properties comparable to those of tetraalkyl‐quaternary ammonium salts. Simultaneously, it retains low steric hindrance typical of monoimidazole compounds, thereby enabling fast electrode kinetics. As a result, Zn–Br batteries incorporating [bMImB]Br2 deliver a high specific energy of 116 Wh·kg−1, alongside an average coulombic efficiency (CE) of 99.22% and energy efficiency (EE) of 89.35% at 10 mAh·cm−2 (0.5 C) for over 150 cycles. Furthermore, the flexible pouch cell maintains a discharge capacity of 110 mAh and 99.7% CE over 100 cycles, even under mechanical deformation. This work offers a generalizable molecular design strategy for developing next‐generation BCAs in halogen‐based energy storage systems.
优化溴络合和动力学:双咪唑策略用于高性能Zn - Br静态电池
锌-溴(Zn-Br)静态电池有望用于大规模储能,但长期以来,溴络合剂(bca)在溴络合强度和氧化还原动力学之间的权衡阻碍了其实际应用。在此,我们报道了一种合理设计的双咪唑盐,1,4‐双(3‐甲基咪唑‐1‐基)丁烷二溴([bMImB]Br2),它具有对称的分子结构,可以调和这一矛盾。[bMImB]Br2表现出很强的溴亲和性,这源于它的高N+原子电荷和低溶解度,其性质与四烷基季铵盐相当。同时,它保留了典型的单咪唑化合物的低位阻,从而实现了快速的电极动力学。结果表明,含有[bMImB]Br2的锌- br电池在10 mAh·cm - 2 (0.5 C)下循环超过150次,平均库仑效率(CE)为99.22%,能量效率(EE)为89.35%,比能高达116 Wh·kg - 1。此外,即使在机械变形的情况下,柔性袋状电池也能在100次循环中保持110毫安时的放电容量和99.7%的CE。这项工作为卤素储能系统中下一代bca的开发提供了一种可推广的分子设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信