Anisotropic Etching Induced Construction of Co‐N4S1 Single‐Atom Sites on 2D Hierarchical Porous Honeycomb Carbon With Enhanced Mass Transfer for Efficient Electrocatalysis

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiamin Wei, Qing Wang, Xiaokai Song, Guangyu He, Haiqun Chen
{"title":"Anisotropic Etching Induced Construction of Co‐N4S1 Single‐Atom Sites on 2D Hierarchical Porous Honeycomb Carbon With Enhanced Mass Transfer for Efficient Electrocatalysis","authors":"Jiamin Wei, Qing Wang, Xiaokai Song, Guangyu He, Haiqun Chen","doi":"10.1002/adfm.202507281","DOIUrl":null,"url":null,"abstract":"The meticulous modulation of asymmetric active sites and the enhancement of mass transfer efficiency are both of paramount importance to the comprehensive performance of single‐atom catalysts. Herein, a facile in situ anisotropic etching induced construction of a 2D monolayered hierarchical porous honeycomb carbon anchored with Co‐N<jats:sub>4</jats:sub>S<jats:sub>1</jats:sub> single‐atom sites is developed. This “two‐in‐one” strategy not only achieves precise modulation of the axial coordination environment of Co single atoms but also enhances multiphase mass transfer capabilities and accessibility of catalytic active centers offered by the unique 2D monolayered honeycomb architecture. The construction of the Co‐N<jats:sub>4</jats:sub>S<jats:sub>1</jats:sub> coordination environment can cause the <jats:italic>d</jats:italic>‐orbital energy level of Co sites to shift toward the Fermi level, reduce the reaction barrier of the rate determining step (<jats:sup>*</jats:sup>NOH→<jats:sup>*</jats:sup>N), and promote the adsorption of <jats:sup>*</jats:sup>N during the nitrate reduction reaction (NO<jats:sub>3</jats:sub>RR) process. By using <jats:italic>operando</jats:italic> electrochemical impedance spectroscopy and distributed relaxation times analysis, the intricate relationship between mass transfer and catalytic performance is deeply revealed. The synergistic integration of metal active center modulation and mass transfer optimization is demonstrated to significantly enhance catalytic performance, as evidenced by the superior NO<jats:sub>3</jats:sub>RR performance (NH<jats:sub>3</jats:sub> yield activity = 9.46 mg h<jats:sup>−1</jats:sup> mg<jats:sub>cat</jats:sub><jats:sup>−1</jats:sup>) and oxygen reduction reaction activity (<jats:italic>E</jats:italic><jats:sub>1/2</jats:sub> = 0.895 V).","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"194 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202507281","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The meticulous modulation of asymmetric active sites and the enhancement of mass transfer efficiency are both of paramount importance to the comprehensive performance of single‐atom catalysts. Herein, a facile in situ anisotropic etching induced construction of a 2D monolayered hierarchical porous honeycomb carbon anchored with Co‐N4S1 single‐atom sites is developed. This “two‐in‐one” strategy not only achieves precise modulation of the axial coordination environment of Co single atoms but also enhances multiphase mass transfer capabilities and accessibility of catalytic active centers offered by the unique 2D monolayered honeycomb architecture. The construction of the Co‐N4S1 coordination environment can cause the d‐orbital energy level of Co sites to shift toward the Fermi level, reduce the reaction barrier of the rate determining step (*NOH→*N), and promote the adsorption of *N during the nitrate reduction reaction (NO3RR) process. By using operando electrochemical impedance spectroscopy and distributed relaxation times analysis, the intricate relationship between mass transfer and catalytic performance is deeply revealed. The synergistic integration of metal active center modulation and mass transfer optimization is demonstrated to significantly enhance catalytic performance, as evidenced by the superior NO3RR performance (NH3 yield activity = 9.46 mg h−1 mgcat−1) and oxygen reduction reaction activity (E1/2 = 0.895 V).
各向异性蚀刻诱导在二维分层多孔蜂窝碳上构建Co - N4S1单原子位,增强传质以实现高效电催化
不对称活性位点的精细调制和传质效率的提高对单原子催化剂的综合性能至关重要。本文开发了一种易于原位各向异性蚀刻诱导的二维单层分层多孔蜂窝碳锚定与Co - N4S1单原子位的结构。这种“二合一”策略不仅实现了Co单原子轴向配位环境的精确调制,而且还增强了多相传质能力和独特的二维单层蜂窝结构提供的催化活性中心的可及性。Co - N4S1配位环境的构建使Co位的d -轨道能级向费米能级移动,降低了速率决定步骤(*NOH→*N)的反应势垒,促进了硝酸还原反应(NO3RR)过程中*N的吸附。通过电化学阻抗谱和分布弛豫时间分析,深入揭示了传质与催化性能之间的复杂关系。金属活性中心调制和传质优化的协同整合显著提高了NO3RR的催化性能(NH3产率为9.46 mg h−1 mgcat−1)和氧还原反应活性(E1/2 = 0.895 V)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信